Achieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain knowledge and capturing non-linear relationships. Its ensemble nature also mitigates the impact of outliers. This approach combines physics-based equations with machine learning to enable more accurate ROP predictions in drilling operations. It enhances drilling efficiency, reduces expenses, and improves decision-making in the oil and gas sector. Extensive testing on actual drilling datasets has demonstrated outstanding performance compared to the multiple linear regression (MLR) method. With the increased R2 and zero P-value. positive findings show that this tool can benefit precise future ROP prediction in southern Iraqi oil well drilling.
Automatic speaker recognition may achieve remarkable performance in matched training and test conditions. Conversely, results drop significantly in incompatible noisy conditions. Furthermore, feature extraction significantly affects performance. Mel-frequency cepstral coefficients MFCCs are most commonly used in this field of study. The literature has reported that the conditions for training and testing are highly correlated. Taken together, these facts support strong recommendations for using MFCC features in similar environmental conditions (train/test) for speaker recognition. However, with noise and reverberation present, MFCC performance is not reliable. To address this, we propose a new feature 'entrocy' for accurate and robu
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
The reservoir characterization and rock typing is a significant tool in performance and prediction of the reservoirs and understanding reservoir architecture, the present work is reservoir characterization and quality Analysis of Carbonate Rock-Types, Yamama carbonate reservoir within southern Iraq has been chosen. Yamama Formation has been affected by different digenesis processes, which impacted on the reservoir quality, where high positively affected were: dissolution and fractures have been improving porosity and permeability, and destructive affected were cementation and compaction, destroyed the porosity and permeability. Depositional reservoir rock types characterization has been identified de
One of the costliest problems facing the production of hydrocarbons in unconsolidated sandstone reservoirs is the production of sand once hydrocarbon production starts. The sanding start prediction model is very important to decide on sand control in the future, including whether or when sand control should be used. This research developed an easy-to-use Computer program to determine the beginning of sanding sites in the driven area. The model is based on estimating the critical pressure drop that occurs when sand is onset to produced. The outcomes have been drawn as a function of the free sand production with the critical flow rates for reservoir pressure decline. The results show that the pressure drawdown required to
... Show MoreThis field experiment, was conducted to investigate a comparison of two methods for harvesting potatoes: mechanical and handy when using moldboard and chisel plow for primary tillage and three different distances for planting tubers in the rows 15, 25, and 35 cm in silt clay loam soil south of Baghdad. The factorial experiment followed a randomized complete block design with three replications using L.S.D. 5 % and 1 %. Mechanical harvest recorded the best valid potato tubers at 88.78 %, marketable yield of 31.74 ton. ha-1, efficiency lifted 95.68 %, tubers damage index 28.41, speeding up the harvesting process and reducing time and effort. Handy harvest gave the least damage to potato tubers, 6.02 %, and unlifted potato tubers, 4.32 %. Howe
... Show MoreThe investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreOil recovery could be impacted by the relation between vertical permeability (Kv) and horizontal permeability (Kh) (Kv/Kh). 4816 plugs that have been getting hold of 18 wells of Mishrif formation in the West Qurna oilfield were used. Kv/Kh data provided some scatter, but the mean is ~1. Kv/Kh =1 was used for the Petrel model before upscaling according to the heterogeneity of each layer.
Kv/Kh values for Mishrif Formation in West Qurna Oilfield are 0.8 for relatively homogeneous, 0.4 for heterogeneous rock, and 0.1 for cap rocks (CRII).
Eclipse TM was used for reservoir simulation. PVT and SCAL data e
... Show MoreUrban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,
... Show MoreDyslexia is a learning disability in which people face difficulty reading though they are intelligent and have motivation for reading. Therefore; it impacts the portion of the brain responsible for processing language. Such a condition compromises the learning efficiency of the affected person, which generally gets unnoticed. Even affected children are unaware of their state. The study investigates the knowledge and awareness of dyslexia among teachers of English in Iraqi primary schools. this study has three objectives: (i) To investigate the amount of awareness and knowledge among the primary school teachers of English in Baghdad City about dyslexia.; (ii) To examine how English teachers’ awareness of dyslexia is affected by the
... Show More