Preferred Language
Articles
/
sBcGPo8BVTCNdQwCJ2Rs
User Authentication based on Keystroke Dynamics Using Backpropagation Network
...Show More Authors

Computer systems and networks are being used in almost every aspect of our daily life; as a result the security threats to computers and networks have also increased significantly. Traditionally, password-based user authentication is widely used to authenticate legitimate user in the current system0T but0T this method has many loop holes such as password sharing, shoulder surfing, brute force attack, dictionary attack, guessing, phishing and many more. The aim of this paper is to enhance the password authentication method by presenting a keystroke dynamics with back propagation neural network as a transparent layer of user authentication. Keystroke Dynamics is one of the famous and inexpensive behavioral biometric technologies, which identifies a user based on the analysis of his/her typing rhythm. This paper utilizes keystroke features including dwell time (DT), flight time (FT), up-up time (UUT), and a mixture of theses features as keystroke representation. The back propagation neural network is trained with the mean of keystroke timing information for each character of password. These times are used to discriminate between the authentic users and impostors. Results of the experiments demonstrate that the backpropagation network with UUT features comparable to combination of DT and FT. Also, the results of backpropagation with combination of DT, FT and UUT provide low False Alarm Rate (FAR) and False Reject Rate (FRR) and high accuracy.

Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Block Ciphers Analysis Based on a Fully Connected Neural Network
...Show More Authors

With the development of high-speed network technologies, there has been a recent rise in the transfer of significant amounts of sensitive data across the Internet and other open channels. The data will be encrypted using the same key for both Triple Data Encryption Standard (TDES) and Advanced Encryption Standard (AES), with block cipher modes called cipher Block Chaining (CBC) and Electronic CodeBook (ECB). Block ciphers are often used for secure data storage in fixed hard drives, portable devices, and safe network data transport. Therefore, to assess the security of the encryption method, it is necessary to become familiar with and evaluate the algorithms of cryptographic systems. Block cipher users need to be sure that the ciphers the

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Performance evaluation of heterogeneous network based on RED and WRED
...Show More Authors

Scopus (3)
Scopus
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Short Text Semantic Similarity Measurement Approach Based on Semantic Network
...Show More Authors

Estimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that repre

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (25)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Thu Jun 28 2018
Journal Name
2018 4th International Conference On Computer And Technology Applications (iccta)
Improving accuracy of CADx system by hybrid PCA and backpropagation
...Show More Authors

—Medical images have recently played a significant role in the diagnosis and detection of various diseases. Medical imaging can provide a means of direct visualization to observe through the human body and notice the small anatomical change and biological processes associated by different biological and physical parameters. To achieve a more accurate and reliable diagnosis, nowadays, varieties of computer aided detection (CAD) and computer-aided diagnosis (CADx) approaches have been established to help interpretation of the medical images. The CAD has become among the many major research subjects in diagnostic radiology and medical imaging. In this work we study the improvement in accuracy of detection of CAD system when comb

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Estimated Outlet Temperatures in Shell-and-Tube Heat Exchanger Using Artificial Neural Network Approach Based on Practical Data
...Show More Authors

The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Finger Vein Recognition Based on PCA and Fusion Convolutional Neural Network
...Show More Authors

Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network

... Show More
Publication Date
Mon Nov 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Treatability influence of municipal sewage effluent on surface water quality assessment based on Nemerow pollution index using an artificial neural network
...Show More Authors
Abstract<p>Assessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem</p> ... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF