Sphingolipids are key components of eukaryotic membranes, particularly the plasma membrane. The biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals, which produce sphingomyelin, organisms such as the pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) as the primary phosphosphingolipid. The key step involves the reaction of ceramide and phosphatidylinositol catalysed by IPC synthase, an essential enzyme with no mammalian equivalent encoded by the AUR1 gene in yeast and recently identified functional orthologues in the pathogenic kinetoplastid protozoa. As such this enzyme represents a promising target for novel anti-fungal and anti-protozoal drugs. Given the paucity of effective treatments for kinetoplastid diseases such as leishmaniasis, there is a need to characterize the protozoan enzyme. To this end a fluorescent-based cell-free assay protocol in a 96-well plate format has been established for the Leishmania major IPC synthase. Using this system the kinetic parameters of the enzyme have been determined as obeying the double displacement model with apparent V(max)=2.31 pmol min(-1)U(-1). Furthermore, inhibitory substrate analogues have been identified. Importantly this assay is amenable to development for use in high-throughput screening applications for lead inhibitors and as such may prove to be a pivotal tool in drug discovery.
Nystatin is the drug of choice for treatment of cutaneous fungal infections with main disadvantage that is the need for multiple applications to achieve complete eradication which may reduce patient compliance. Microparticles offer a solution for such issue as they are one of sustained release preparations that achieve slow release of drug over an extended period of time. The objectives of this study were to fabricate nystatin-loaded chitosan microparticles with the ultimate goal of prolonging drug release and to analyze the influence of polymer concentration on various properties of microparticles. Microparticles were prepared by chemical cross-linking method using glutaraldehyde as cross-linking agent. Five formulas, namely N1C1, N1C2,
... Show MoreThe liver is one of the largest glands in the digestive system and performs 13 various functions, including the secretion of hormones and enzymes. The gallbladder serves as a storage reservoir for secretions before they are released into the digestive system through the duodenum. The bile ducts branch from the liver’s lobes and ultimately connect to the digestive system, making this structure significant and distinct among different animal species. This review focuses on the differences between dogs and cats, highlighting the importance of these differences from both health and pathological perspectives. After conducting a detailed scientific review of the biliary tree in dogs and cats, we concluded that cats are more susceptible to the d
... Show MoreThe liver is one of the largest glands in the digestive system and performs 13 various functions, including the secretion of hormones and enzymes. The gallbladder serves as a storage reservoir for secretions before they are released into the digestive system through the duodenum. The bile ducts branch from the liver’s lobes and ultimately connect to the digestive system, making this structure significant and distinct among different animal species. This review focuses on the differences between dogs and cats, highlighting the importance of these differences from both health and pathological perspectives. After conducting a detailed scientific review of the biliary tree in dogs and cats, we concluded that cats are more susceptible
... Show More<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreThe ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi
... Show MoreA mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of th
... Show MoreThe effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and hea
... Show More