Preferred Language
Articles
/
sBaRF4cBVTCNdQwCejW0
Bearing Capacity Factor of Shallow Foundation on Reinforced Sloped Clayey Soil
...Show More Authors

The placement of buildings and structures on/or adjacent to slopes is possible, but this poses a danger to the structure due to failures that occur in slopes. Therefore, a solution or improvement should be determined for these issues of the collapse of the structure as a result of the failure of the slopes. A laboratory model has been built to test the impact of some variables on the bearing capacity factor. The variables include the magnitude of static axial load applied at the center of footing, the depth of embedment, the spacing between geogrid reinforcement layer and the numbering of the geogrid sheet under the footing, the inclination angle of slope clayey soil (β), the spacing between the footing's edge and the slope's end (b/H). The results show that the critical case of reduction in bearing capacity is mobilized at (b/H˂ 0.25) and (β˃ 30°). A design chart has been obtained to the case of unreinforced slope soil under a footing to describe the reduction in (Nc) when increasing the inclination angle and another design chart of the case of reinforced slope soil with (N=1, 2 and 3) has been obtained to show the increase in value of (Nc) with increasing the number of the reinforced layer at different values of (β) and finally simple equations have been obtained in order to calculate the ultimate bearing capacity of foundation on sloped clayey soil at different number of reinforcement.

Crossref
View Publication
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Engineering
Effect of Saturation of Sandy Soil on the Displacement Amplitude of Soil Foundation System under Vibration
...Show More Authors

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displaceme

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Engineering
Experimental Study on the Behavior of Square-Skirted Foundation Rested on Gypseous soil Under Inclined Load
...Show More Authors

This work investigates experimentally the effect of using a skirt with a square foundation of 100 mm width resting on dry gypseous soil (i.e., loose soil with 33% relative density), and subjected to an inclined load. Previous works did not study the use square skirted foundation rested on gypseous soil and subjected to inclined load. The investigated soil was brought from Tikrit city with 59% gypsum content. Standard physical and chemical tests on selected soil were carried out. Model laboratory tests were carried out to determine the effect of using a skirt with a square foundation on the load-settlement behavior of gypseous soil and subjected to inclined load with various Skirt depth (Ds) to foundation width (B) ratio

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Optimal characteristics of wind turbine to maximize capacity factor
...Show More Authors

The capacity factor is the main factor in assessing the efficiency of wind Turbine. This paper presents a procedure to find the optimal wind turbine for five different locations in Iraq based on finding the highest capacity factor of wind turbine for different locations. The wind data for twelve successive years (2009-2020) of five locations in Iraq are collected and analyzed. The longitudes and latitudes of the candidate sites are (44.3661o E, 33.3152o N), (47.7738o E, 30.5258o N), (45.8160o E, 32.5165o N), (44.33265o E, 32.0107o N) and (46.25691o E, 31.0510o N) for Baghdad, Basrah, Al-Kut, Al-Najaf, and Al-Nasiriyah respectively. The average wind velocity, standard deviation, Weibull shape and scale factors, and probability density functi

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Jan 29 2024
Journal Name
Proceedings Of The International Conference On Research Advances In Engineering And Technology - Itechcet 2022
Effect of length to diameter ratio on column bearing capacity stabilized with sodium silicate
...Show More Authors

The numerical analysis was conducted to studying the influence of length to diameter ratio (L/D) on the behavior of the soil treated with sand columns treated with 8% sodium silicate for both floating and end bearing type by using finite element method (Plaxis 3D Foundation ) for isolated foundation of real dimensions. The analysis’s study indicate that in the floating type the best improvement ratio was achieved at (L/D=8) when using columns with a diameter of (0.5, 0.7), but when using columns with a diameter of 0.3 m, it was noticed that the bearing improvement ratio increases with increasing (L/d). While the results of the analysis for end bearing type show that the higher improvement ratio was achieved at (L/D=4) when using columns w

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Heave Behavior of Granular Pile Anchor-Foundation System (GPA-Foundation System) in Expansive Soil
...Show More Authors

Granular  Pile  Anchor  (GPA)  is  one  of  the  innovative  foundation  techniques,  devised  for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Wed Jun 24 2020
Journal Name
Journal Of Engineering
Using Steel Slag for Stabilizing Clayey Soil in Sulaimani City-Iraq
...Show More Authors

The clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil.

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
E3s Web Of Conferences
Seismic Analysis of Floating Stone Columns in Soft Clayey Soil
...Show More Authors

The response of floating stone columns of different lengths to diameter ratio (L/D = 0, 2, 4, 6, 8, and 10) ratios exposed to earthquake excitations is well modeled in this paper. Such stone column behavior is essential in the case of lateral displacement under an earthquake through the soft clay soil. ABAQUS software was used to simulate the behavior of stone columns in soft clayey soil using an axisymmetric finite element model. The behavior of stone column material has been modeled with a Drucker-Prager model. The soft soil material was modeled by the Mohr-Coulomb failure criterion assuming an elastic-perfectly plastic behavior. The floating stone columns were subjected to the El Centro earthquake, which had a magnitude of 7.1 an

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Sun Jan 25 2015
Journal Name
Geomechanics And Engineering
Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix
...Show More Authors

View Publication
Scopus (45)
Scopus
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Effect of Swelling Soil on Load Carrying Capacity of a Single Pile
...Show More Authors

Expansive soils are recognized by their swelling potential upon wetting due to the existence of some clay minerals such as  montmorillonite. An effective solution was found to avoid the danger of such soils by using piles. A single pile embedded in an elasto-plastic expansive soil has been analyzed by using one of the available software which is ABAQUS to investigate the effect of applied loads on pile’s top and investigate the effect of swelling soils on load carrying capacity of the pile. The result shows that as the pile is axially loaded at its top, the axial force along the pile gradually changes from (tension) to (compression) and the pile tends to move downward. The applied load needed to initiate pile’s settlement depend

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Evaluation of the Influence of De-sanding (Recycling System) Process on the Pile Bearing Capacity Using Full Scale Models
...Show More Authors

The present study investigates the effect of the de-sanding (recycling system) on the bearing capacity of the bored piles. Full-scale models were conducted on two groups of piles, the first group was implemented without using this system, and the second group was implemented using the recycling system. All piles were tested by static load test, considering the time factor for which the piles were implemented. The test results indicated a significant and clear difference in the bearing capacity of the piles when using this system. The use of the recycling system led to a significant increase in the bearing capacity of the piles by 50% or more. Thus it was possible to reduce the pile length by (15 % or more) thus, and implementation costs

... Show More
View Publication Preview PDF
Crossref