The placement of buildings and structures on/or adjacent to slopes is possible, but this poses a danger to the structure due to failures that occur in slopes. Therefore, a solution or improvement should be determined for these issues of the collapse of the structure as a result of the failure of the slopes. A laboratory model has been built to test the impact of some variables on the bearing capacity factor. The variables include the magnitude of static axial load applied at the center of footing, the depth of embedment, the spacing between geogrid reinforcement layer and the numbering of the geogrid sheet under the footing, the inclination angle of slope clayey soil (β), the spacing between the footing's edge and the slope's end (b/H). The results show that the critical case of reduction in bearing capacity is mobilized at (b/H˂ 0.25) and (β˃ 30°). A design chart has been obtained to the case of unreinforced slope soil under a footing to describe the reduction in (Nc) when increasing the inclination angle and another design chart of the case of reinforced slope soil with (N=1, 2 and 3) has been obtained to show the increase in value of (Nc) with increasing the number of the reinforced layer at different values of (β) and finally simple equations have been obtained in order to calculate the ultimate bearing capacity of foundation on sloped clayey soil at different number of reinforcement.
This paper presents a numerical analysis of the piled-raft foundation (PRF) based on the actual behavior of supporting piles. The raft was modeled as a thin plate, while the piles were modeled as springs in different ways. This research also aims to propose an analytical model of piles based on actual behavior at fieldwork. The results proved that the structural behavior of raft member can be improved through utilizing the actual behavior of supporting piles. When the piles were modeled as non-linear stiffness springs, settlements and bending stresses of raft foundation were reduce marginally as compared with those obtained from piles with linear stiffness springs.
This research is concerned to investigate the behavior of reinforced concrete (RC) deep beams strengthened with carbon fiber reinforced polymer (CFRP) strips. The experimental part of this research is carried out by testing seven RC deep beams having the same dimensions and steel reinforcement which have been divided into two groups according to the strengthening schemes. Group one was consisted of three deep beams strengthened with vertical U-wrapped CFRP strips. While, Group two was consisted of three deep beams strengthened with inclined CFRP strips oriented by 45o with the longitudinal axis of the beam. The remaining beam is kept unstrengthening as a reference beam. For each group, the variable considered
... Show MoreIn the geotechnical and terramechanical engineering applications, precise understandings are yet to be established on the off-road structures interacting with complex soil profiles. Several theoretical and experimental approaches have been used to measure the ultimate bearing capacity of the layered soil, but with a significant level of differences depending on the failure mechanisms assumed. Furthermore, local displacement fields in layered soils are not yet studied well. Here, the bearing capacity of a dense sand layer overlying loose sand beneath a rigid beam is studied under the plain-strain condition. The study employs using digital particle image velocimetry (DPIV) and finite element method (FEM) simulations. In the FEM, an experiment
... Show MoreIn this paper, a dynamic investigation is done for strip, rectangular and square machine foundation at the top surface of two-layer dry sand with various states (i.e., loose on medium sand and dense on medium sand). The dynamic investigation is performed numerically using finite element programming, PLAXIS 3D. The soil is expected as a versatile totally plastic material that complies with the Mohr-Coulomb yield criterion. A harmonic load is applied at the base with an amplitude of 6 kPa at a frequency of (2 and 6) Hz, and seismic is applied with acceleration – time input of earthquake hit Halabjah city north of Iraq. A parametric study is done to evaluate the influence of changing L/B ratio (Length=12,6,3 m and width=3 m), type of sand
... Show MoreAdhrt all fungal biological control ability Tdhadah less than 2 repel Alaftran Almamradan showed leaky mushroom Biological control is thermally laboratories and different concentrations of 5, 10 and 20% inhibition in the growth of fungus colonies amounted to 3.8 cm and 3.1 and 2.4 respectively in comparison with control 9 cm
The aim of this study is to understand the effect of addition carbon types on aluminum electrical conductivity which used three fillers of carbon reinforced aluminum at different weight fractions. The experimental results showed that electrical conductivity of aluminum was decreased by the addition all carbon types, also at low weight fraction of carbon black; it reached (4.53S/cm), whereas it was appeared highly increasing for each carbon fiber and synthetic graphite. At (45%) weight fraction the electrical conductivity was decreased to (4.36Scm) and (4.27Scm) for each carbon fiber and synthetic graphite, respectively. While it was reached to maximum value with carbon black. Hybrid composites were investigated also; the results exhibit tha
... Show MoreThis study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.
... Show MoreIn this study, the behavior of square helical piles models (5×5) mm2 embedded in expansive soil bed overlaying a layer of sandy soil was investigated. The sand layer 200mm thickness was compacted into four sub layers in a steel container with diameter 400mm in size. Sandy soil layer was compacted into two relative densities 40% and 80%. The bed of ثءحties 40% and 80%.The bed of o00mm in size.Sandy soil layer was compacted into two relative densities 40% and 80%.The bed of oexpansive soil 300mm thickness was compacted into six sub layers on sandy soil layer. Model tests are performed with helical pile length 350mm, 400mm and 450mm and with helix diameter 15mm and 20mm. Also, one helix and double helix were
... Show More