Recovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.
From a group of 60 patients with dentoalveolar infections among which 10 were diabetic and 10 non-diabetic were elected as test group as well as 10 normal subjects as control group. Six Staphylococcus aureus and Streptococcus anginousus were diagnosed in the first and second group of the patients the immune status of the patients and control subject were tested by pathogen specific antibody titre, neotrophil NBT reduction phagocytosis and leukocyte inhibition LIF. Diabetic patients with dentoalveolar infection shows decreased specific antibody titers, subnormal neutrophil NBT phagocytic % as well as non significant LIF % in comparison non diabetic reveal high specific antibody titers against , high neutrophil NBT% and significant LIF% re
... Show MoreA new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interac
... Show MoreLet L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
Let R be a commutative ring with identity and let M be a unital left Rmodule.
Goodearl introduced the following concept :A submodule A of an R –
module M is an y – closed submodule of M if is nonsingular.In this paper we
introduced an y – closed injective modules andchain condition on y – closed
submodules.
The research aims to know the question asking skills in terms of levels, conditions, classification, and types. The research limited to the literature that dealt with the importance of questioning for students and teachers. The most important term used in the research is the skill (Ryan defined it as "the ability to perform with great efficiency, accuracy, and ease). The results of the research are as follows: 1. the questions asked by the schoolteacher within the assessment of students' learning. 2. Teachers should focus on the lower levels of learning (remembering, understanding and comprehension) and then evaluating students at the higher levels (synthesis and evaluation). 3. Teacher with good knowledge can skillfully use the question
... Show MoreLet R be an associative ring with identity and M be unital non zero R-module. A
submodule N of a module M is called a δ-small submodule of M (briefly N << M )if
N+X=M for any proper submodule X of M with M/X singular, we have
X=M .
In this work,we study the modules which satisfies the ascending chain condition
(a. c. c.) and descending chain condition (d. c. c.) on this kind of submodules .Then
we generalize this conditions into the rings , in the last section we get same results
on δ- supplement submodules and we discuss some of these results on this types of
submodules.
One of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried
... Show MoreIn this paper, we established a mathematical model of an SI1I2R epidemic disease with saturated incidence and general recovery functions of the first disease I1. Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stability is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we carried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct numerical simulations that suppo
... Show MoreThis paper is devoted to an inverse problem of determining discontinuous space-wise dependent heat source in a linear parabolic equation from the measurements at the final moment. In the existing literature, a considerably accurate solution to the inverse problems with an unknown space-wise dependent heat source is impossible without introducing any type of regularization method but here we have to determine the unknown discontinuous space-wise dependent heat source accurately using the Haar wavelet collocation method (HWCM) without applying the regularization technique. This HWCM is based on finite-difference and Haar wavelets approximation to the inverse problem. In contrast to othe