Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The integrated acceleration record and the measured hammer load vs. time data were utilized to determine the generalized bending load and fracture energy. Four forms of energy were calculated at the maximum load. The total energy was calculated and divided into two parts: The first part was gained by the beam's rotational kinetic energy, the bending energy in the specimen, and the elastic strain energy. The second part was the hammer's kinetic energy before striking the beam. The analytical results showed that the bending energy was less than its rotational kinetic energy for the encased GFRP beams and the reference specimens. In contrast, the encased steel beams had high bending energy due to the higher impact load and deflection. Strain energy recorded lower energy values for all specimens with higher bending energy. There is a good agreement between the tested and the calculated inertial and bending force for all beams. The ratio of inertia force to the total impact load for the encased GFRP and encased steel beams to the reference beam is about 9% and 5%, respectively.
In this paper, the theoretical cross section in pre-equilibrium nuclear reaction has been studied for the reaction at energy 22.4 MeV. Ericson’s formula of partial level density PLD and their corrections (William’s correction and spin correction) have been substituted in the theoretical cross section and compared with the experimental data for nucleus. It has been found that the theoretical cross section with one-component PLD from Ericson’s formula when doesn’t agree with the experimental value and when . There is little agreement only at the high value of energy range with the experimental cross section. The theoretical cross section that depends on the one-component William's formula and on-component corrected to spi
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and
... Show MoreRapid, reproducible and accurate method has been developed for the assay for of mebendazol (MBZ) residual assay. The method is based on alkaline hydrolysis of MBZ with sodium hydroxide then oxidation with N-bromosuccinimide (NBS) followed by coupling with 4-Bromoaniline (4-BA) to yield a highly colored product absorbed at maximum 434 nm. Regression analysis of linearity range was found (0.6-2.8) µg.ml-1. The optimum conditions that affect the oxidation were studied. The developed method was found to be precise with mean value of relative standard deviation (1.153- 1.303) and accurate with relative error (-0.5940-1.7821) .The calculated molar absorptivity and sandal sensitivity values of (29825 L.mol-1.cm
... Show MoreRapid, reproducible and accurate method has been developed for the assay for of mebendazol (MBZ) residual assay. The method is based on alkaline hydrolysis of MBZ with sodium hydroxide then oxidation with N-bromosuccinimide (NBS) followed by coupling with 4-Bromoaniline (4-BA) to yield a highly colored product absorbed at maximum 434 nm. Regression analysis of linearity range was found (0.6-2.8) µg.ml-1. The optimum conditions that affect the oxidation were studied. The developed method was found to be precise with mean value of relative standard deviation (1.153- 1.303) and accurate with relative error (-0.5940-1.7821) .The calculated molar absorptivity and sandal sensitivity values of (29825 L.mol-1.cm-1), 0.0099 µg.cm-2 respe
... Show More