Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The integrated acceleration record and the measured hammer load vs. time data were utilized to determine the generalized bending load and fracture energy. Four forms of energy were calculated at the maximum load. The total energy was calculated and divided into two parts: The first part was gained by the beam's rotational kinetic energy, the bending energy in the specimen, and the elastic strain energy. The second part was the hammer's kinetic energy before striking the beam. The analytical results showed that the bending energy was less than its rotational kinetic energy for the encased GFRP beams and the reference specimens. In contrast, the encased steel beams had high bending energy due to the higher impact load and deflection. Strain energy recorded lower energy values for all specimens with higher bending energy. There is a good agreement between the tested and the calculated inertial and bending force for all beams. The ratio of inertia force to the total impact load for the encased GFRP and encased steel beams to the reference beam is about 9% and 5%, respectively.
This paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreThis study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreLaboratory model tests were performed to investigate the behavior of shallow and inclined skirted foundations placed on sandy soil with R.D%=30 and the extent of the impact of the positive and negative eccentric-inclined loading effect on them. To achieve the experimental tests, it was used a box of (600×600) mm cross-sectional and 600mm in height and a square footing of (50*50) mm and 10 mm in thickness attached to the skirt with Ds=0.5B and various an angle of (10°, 20°, 30°). The results showed that using skirts leads to a significant improvement in load-carrying capacity and decreased settlement. In addition, when the skirt angle increased, the ultimate load improved. Load-carrying capacity decreased with increasing eccentri
... Show MoreA collection of pictures of traditional Kurdish women's national clothing and contemporary clothing was collected. A visit was also made to the city of Sulaymaniyah and the city of Halabja to find out the foundations of traditional clothing for the Kurdish regions and the impact of contemporary fashion on traditional dress. Which represents the culture and regionalism and reflects the picturesque nature of northern Iraq, and in order to complete the study, the parametric measurements of the clothes were analyzed and the graphs of the dress and its accessories were re-drawn to understand and make a comparison between them to study the clear influences and changes and examine the possibility of benefiting from them in sewing contemporary f
... Show MoreBuilding natural period, T, is a key character in building response for wind and seismic induced forces. In design practice, the period, T, is either estimated from empirical relations proposed by the design codes or determined from analytical or numerical models. The effect of the soil-structure interaction is usually neglected in the design practice and analysis models. This paper uses a sophisticated finite element simulation to investigate the effect of soil-structure modeling on the fundamental period of RC buildings subjected to wind and seismic induced forces. A typical interior building frame has been imitated using the frame element for beams and columns with constrains to mo
A nano manganese dioxide (MnO2) was electrodeposited galvanostatically onto a carbon fiber (CF) surface using the simple method of anodic electrodeposition. The composite electrode was characterized by field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Very few studies investigated the efficiency of this electrode for heavy metals removal, especially chromium. The electrosorption properties of the nano MnO2/CF electrode were examined by removing Cr(VI) ions from aqueous solutions. NaCl concentration, pH, and cell voltage were studied and optimized using the Box-Behnken design (BDD) to investigate their effects and interactions on the electrosorption process. The results showed that the
... Show MoreIn this paper, the behavior of spliced steel girders under static loading is investigated. A group of seven steel I-girders were tested experimentally. Two concentrated loads were applied to each specimen at third points and the load was increased incrementally up to the yield of the specimen. Two types of splices were considered; the bearing type and the friction-grip type splices. For comparison, an analytical study was made for the tested girders in which the finite element analysis program (Abaqus) was used for analysis. It was found that the maximum test load for spliced girders with bearing type splices was in the range of (34%) to (67%) of the maximum test load for the reference girder. For girders spliced by using friction-grip t
... Show MoreBackground: to evaluate the effect of different dentifrices on the surface roughness of two composite resins (nanofilled-based and nanoceramic – based composite resins). Materials and methods: Forty specimens (diameter 12 mm and height of 2mm) prepared from different composite resin materials: Z350 (nanofilled composite, and Ceram-X (nanoceramic) .they were subjected to brushing simulation equivalent to the period of 1 year. The groups assessed were a control group brushed with distilled water (G1), Opalescence whitening toothpasteR (G2), Colgate sensitive pro-relief (G3) and Biomed Charcoal Toothpaste (G4). The initial and final roughness of each group was tested by surface roughness tester. The results were statistically analyzed using
... Show More