Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The integrated acceleration record and the measured hammer load vs. time data were utilized to determine the generalized bending load and fracture energy. Four forms of energy were calculated at the maximum load. The total energy was calculated and divided into two parts: The first part was gained by the beam's rotational kinetic energy, the bending energy in the specimen, and the elastic strain energy. The second part was the hammer's kinetic energy before striking the beam. The analytical results showed that the bending energy was less than its rotational kinetic energy for the encased GFRP beams and the reference specimens. In contrast, the encased steel beams had high bending energy due to the higher impact load and deflection. Strain energy recorded lower energy values for all specimens with higher bending energy. There is a good agreement between the tested and the calculated inertial and bending force for all beams. The ratio of inertia force to the total impact load for the encased GFRP and encased steel beams to the reference beam is about 9% and 5%, respectively.
The study aimed at designing compound exercises using added weight on some skill abilities in youth soccer players aged (17 – 19) years old. The researcher sued the experimental method on (30) players aged (17 – 19) years old from Al Zawraa Sport Club. The subjects were divided into three groups and the training program was applied for (8) weeks with (3) training sessions per week. The data was collected and treated using proper statistical operations to conclude that compound exercises with weights between improved the subjects compared to the groups that did not use the added weights. Finally, the researchers recommended the necessity of using compound exercises using added weights during training sessions for youth soccer pla
... Show MoreNovel derivatives of 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole and 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole carrying Schiff bases moiety were synthesised and fully characterised. The protection of D- fructose using benzoyl chloride was synthesized, followed by nucleophilic addition/elimination between benzotria- zole and chloroacetyl chloride to give 1-(1- chloroacetyl)- 1H-benzotriazole. The next step was condensation reaction of protected fructose and 1-(1-chloroacetyl)-1H- benzotriazole producing a new nucleoside analogue. The novel nucleoside analogues underwent a second conden- sation reaction with different aromatic and aliphatic amines to provide new Schiff b
... Show MoreBackground: Oral squamous cell carcinoma represents the vast majority of oral cancer it is a common malignant tumor with an increasing incidence. Around the world, the 5 year mortality rate of oral cancer is about 50%. Thus novel biomarkers for early detection oral squamous cell carcinoma are needed. The level of three salivary microRNAs namely hsa-miR-200a, hsa-miR-125a and hsa- miR-93 were measured in saliva of patients with oral squamous cell carcinoma and compared their levels in saliva of healthy control subjects to determine their potential as oral cancer biomarker. Materials and methods: The level of these three microRNAs was measured by using revers transcription, preamplification and quantitative PCR. Results: Only miR-200a presen
... Show MoreThe aim of this study is to construct a Mathematical model connecting the variation between the ambient temperatures and the level of consumption of kerosene in Iraq during the period (1985-1995), and use it to predict the level of this consumption during the years (2005-2015) based on the estimation of the ambient temperatures.