Vehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreThis article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection
... Show MoreMaximum likelihood estimation method, uniformly minimum variance unbiased estimation method and minimum mean square error estimation, as classical estimation procedures, are frequently used for parameter estimation in statistics, which assuming the parameter is constant , while Bayes method assuming the parameter is random variable and hence the Bayes estimator is an estimator which minimize the Bayes risk for each value the random observable and for square error lose function the Bayes estimator is the posterior mean. It is well known that the Bayesian estimation is hardly used as a parameter estimation technique due to some difficulties to finding a prior distribution.
The interest of this paper is that
... Show MoreNeurolinguistics is a new science, which studies the close relationship between language and neuroscience, and this new interdisciplinary field confirms the functional integration between language and the nervous system, that is, the movement of linguistic information in the brain in receiving, acquiring and producing to achieve linguistic communication; Because language is in fact a mental process that takes place only through the nervous system, and this research shows the benefit of each of these two fields to the other, and this science includes important topics, including: language acquisition, the linguistic abilities of the two hemispheres of the brain, the linguistic responsibility of the brain centers, and the time limit for langua
... Show Morethe pursue of social systems history present to us solid evidence that the collapse of that systems be caused by either the stagnancy aftermath maturity or unreal intellectual foundation which lead to sudden collapse, while the capitalism can avoided that intellectual damages due to its dynamic system with appropriate auto adaptation mechanism and use it excellently in the right time.
The globalization had excrete (as one of the capitalism adaptation mechanism) its own targets and its methods in framework of multinationals corporations which consist with capitalism states that employed the international organizations to reconstruction the global economy to serve such targets. So the glob
... Show MoreA- The research problem: the research problem which is the garments industry, as a
whole it does not rely on a single system in the sizes of the clothing and the working
companies, see that it is not plausible that the sizes be unificd and consistent in all companies.
The current sizes in the domestic Iraqi markets are not suitable for some females ,on the other
hand the Iraqi industry suffers the lack of a modern standard for some Iraqis female bodies.
B- The Signifiance of the research: lies in the study of the diversity of the human body
sizes and naming them to reflect the desires and requirements of the consumer and try to find
a method to meet their expectations as well as to raise the level of garments industr
OpenStreetMap (OSM), recognised for its current and readily accessible spatial database, frequently serves regions lacking precise data at the necessary granularity. Global collaboration among OSM contributors presents challenges to data quality and uniformity, exacerbated by the sheer volume of input and indistinct data annotation protocols. This study presents a methodological improvement in the spatial accuracy of OSM datasets centred over Baghdad, Iraq, utilising data derived from OSM services and satellite imagery. An analytical focus was placed on two geometric correction methods: a two-dimensional polynomial affine transformation and a two-dimensional polynomial conformal transformation. The former involves twelve coefficients for ad
... Show More