Preferred Language
Articles
/
s4bUd4YBIXToZYALHIsD
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator has superior performance compared with other estimators.  

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 02 2017
Journal Name
Journal Of Engineering
Estimation Curve Numbers using GIS and Hec-GeoHMS Model
...Show More Authors

Recently, the development and application of the hydrological models based on Geographical Information System (GIS) has increased around the world. One of the most important applications of GIS is mapping the Curve Number (CN) of a catchment. In this research, three softwares, such as an ArcView GIS 9.3 with ArcInfo, Arc Hydro Tool and Geospatial Hydrologic Modeling Extension (Hec-GeoHMS) model for ArcView GIS 9.3, were used to calculate CN of (19210 ha) Salt Creek watershed (SC) which is located in Osage County, Oklahoma, USA. Multi layers were combined and examined using the Environmental Systems Research Institute (ESRI) ArcMap 2009. These layers are soil layer (Soil Survey Geographic SSURGO), 30 m x 30 m resolution of Digital Elevati

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
A Note on the Hierarchical Model and Power Prior Distribution in Bayesian Quantile Regression
...Show More Authors

  In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the  and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.

View Publication Preview PDF
Crossref
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compare between simex and Quassi-likelihood methods in estimation of regression function in the presence of measurement error
...Show More Authors

       In recent years, the attention of researchers has increased of semi-parametric regression models, because it is possible to integrate the parametric and non-parametric regression models in one and then form a regression model has the potential to deal with the cruse of dimensionality in non-parametric models that occurs through the increasing of explanatory variables. Involved in the analysis and then decreasing the accuracy of the estimation. As well as the privilege of this type of model with flexibility in the application field compared to the parametric models which comply with certain conditions such as knowledge of the distribution of errors or the parametric models may

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 11 2025
Journal Name
Iraqi Statisticians Journal
Semi-Parametric Fuzzy Quantile Regression Model EstimationBased on Proposed Metric via Jensen–Shannon Distance
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Fri Aug 01 2025
Journal Name
Journal Of Engineering
Computational Method for Unsteady Motion of Two-Dimensional Airfoil
...Show More Authors

A numerical method is developed for calculation of the wake geometry and aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady motion in an inviscid incompressible flow (panel method). The method is applied to sudden change in airfoil incidence angle and airfoil oscillations at high reduced frequency. The effect of non-linear wake on the unsteady aerodynamic properties and oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The results of the present method shows good accuracy as compared with flat plate and for unsteady motion with heaving and pitching oscillation the present method also shows good trend with the experimental results taken from published data. The method shows good result

... Show More
View Publication
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Ordinary Methods (LS,IV) and Robust Methods (2SWLS,LTS,RA) to estimate the Parameters of ARX(1,1,1) Model for Electric Loads
...Show More Authors

 

Abstract:

The models of time series often suffer from the problem of the existence of outliers ​​that accompany the data collection process for many reasons, their existence may have a significant impact on the estimation of the parameters of the studied model. Access to highly efficient estimators  is one of the most important stages of statistical analysis, And it is therefore important to choose the appropriate methods to obtain good  estimators. The aim of this research is to compare the ordinary estimators and the robust estimators of the estimation of the parameters of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Branch and Bound Algorithm with Penalty Function Method for solving Non-linear Bi-level programming with application
...Show More Authors

The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.

View Publication
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Robust Methods For Handling the Problem of Multicollinearity
...Show More Authors

The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers  , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Ieee Access
Implementation of Univariate Paradigm for Streamflow Simulation Using Hybrid Data-Driven Model: Case Study in Tropical Region
...Show More Authors

View Publication
Scopus (89)
Crossref (87)
Scopus Clarivate Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Journal Of Economics And Administrative Sciences
Seemingly Unrelated Regression Model to Measure the Profitability of Some Iraqi Private Commercial Banks with Presence of Outliers
...Show More Authors

A seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjus

... Show More
View Publication Preview PDF