The present study investigates the characterization of silver nanoparticles (AgNPs) synthesized using Fusarium solani and their impact on tomato seed germination, plant growth, and disease resistance. A visible color change from yellow to dark smoky indicated the formation of AgNPs, while UV-visible spectrophotometry revealed an absorbance peak at 437 nm, confirming their presence. Atomic force microscopy analysis showed that the AgNPs ranged from 0 to 39.27 nm in size, with an average height of 5.772 nm, while scanning electron microscopy highlighted their diverse surface morphology. The application of AgNPs and mycorrhizal fungi significantly improved tomato seed germination rates, plant height, and dry weight compared to untreated plants infected with Fusarium oxysporum. The germination rate increased to 81.15% with mycorrhizal fungi and 80.02% with AgNPs treatment alone, compared to 35.63% in infected plants. Plant height also increased, reaching 17.95 cm in mycorrhiza-treated plants and 17.08 cm in those treated with AgNPs. Furthermore, the dry weight and chlorophyll content were significantly higher in treated plants, with mycorrhizal-inoculated plants showing a dry weight of 0.63 g and a chlorophyll content of 28.53 mg/g. AgNP treatment similarly enhanced these parameters infection severity of F. oxysporum was reduced, with the lowest rate observed in plants receiving both AgNPs and mycorrhizal treatments. These results indicate that AgNPs and mycorrhizal fungi offer effective protection against fungal pathogens while promoting overall plant health, highlighting their potential for use in sustainable agricultural practices.
This paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable cl
... Show MoreNon-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important role in d
... Show MoreNon-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important rol
... Show MoreThe sunflower plants are attacked by serious seed and soil-borne pathogens including charcoal rot disease that caused by
Morphological and molecular identification was done, using universal primers for molecular identification. Finally, a greenhouse experiment was conducted, and
Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreThe results revealed that the incidence of Rhizoctonial damping-off of tomato was 65% and 67% in both rotations. Substrates of pine leaf litter and mushcom 2 suppressed infection reaching 59 and 60%. Mushcom1 restricted disease occurrence to 53%. In contrast, formulated Th + B. subtillus revealed a noticeable disease reduction reaching 33.16%, due to nutrients incited from mushroom thallus. The highest occurrence of damping-off (92 and 94 %) was found in control (sandy loam soil) during rotations. However, partial suppressive of Trichoderma spp. against R. solani was detected in different substrates. Mortality was 90% in control (non-amended soil). Finally, a comparable reduction of
... Show MoreDevelopment of improved methods for the synthesis of metal oxide nanoparticles are of high priority for the advancement of material science and technology. Herein, the biosynthesis of ZnO using hydrahelix of beta vulgaris and the seed of abrus precatorius as an aqueaus extracts adduced respectivily as stablizer and reductant reagent. The support are characterized by spectroscopic methods ( Ft-IR, Uv-vis ).The FTIR confirmed the presence of ZnO band. The Uv-visible showed absorption peak at corresponds to the ZnO nanostructures. X-ray diffraction, scaning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX) techniques are taken to investigation the size, structure and composition of synthesised ZnO nanocrystals. The XRD pattern mat
... Show MoreSeventy five E. coli isolates were collected from urine of patients with urinary tract infections in AL-Kadhimia and AL-Yarmook teaching hospitals in Baghdad for a period between 22/11/2009 to 15/3/2010, from these samples twenty five isolates were selected according to their pattern of the highest resistance as these showing multi-drug resistances and tested to specify their minimum inhibitory concentration for (meropenem, gentamicin and amikacin), meropenem was found having the lowest MIC comparing with others. This study also includes in vitro effects of various combinations of three types of antimicrobials (meropenem, gentamicin and amikacin) against twenty five E. c
... Show More