Introduction: The current study investigated the use of acid-treated rice husks to remove heavy metals and organic pollutants from water containing heavy metals (R2C and Cd2) and organic pollutants (phenol and atrazine). Methods: The adsorption effect of acid-treated rice husks was compared with other adsorbents such as activated carbon, chitosan, and bentonite clay. Result: both acid-treated rice husks and activated carbon were highly efficient materials, and thus, rice husks were established as a cost-effective alternative. It was revealed that acid treatment of rice husks enhanced adsorption capacity by half, and lead removal was nearly doubled. The most effective pH value for optimizing organic pollutants and heavy metals while minimizing conditions was found to be 6.5. Regarding the temperature findings, the data revealed a minor increase in temperature; nevertheless, the result was not statistically significant, even if the temperatures became more efficient. When compared to activated carbon, chitosan, and bentonite clay, acid-treated rice husks demonstrated high removal performance, making them a very cost-effective raw material. Finally, the presence of active functional groups that transfer the action of rice husks to pollutants was established by adsorption processes studied using Fourier transform infrared spectroscopy (FTIR) and BET (Brunauer-Emmett-Teller) surface area. Conclusion: Therefore, it has been demonstrated that this technique, which entails removing at least one acid-treated rice husk, is more effective at treating industrial wastewater than previously documented and widely used technologies like flocculation, coagulation, and reverse osmosis. It also offers a safe and sustainable substitute for conventional water quality methods.
The method of incineration was chosen to treat the most commonly used antimicrobial agents in Iraq (Triclabendazol, Oxfendazol, Mebendazole), which are antibiotics for children. The moisture content and chemical oxygen demand (COD) were examined and the results were (93.34, 94.88, 92.97)%, (52000, 33200, and 64000) mg/ L. The temperature was determined as a variable in the burning process (600, 500, 400)° C for the purpose of calculating the loss of ignition LOI and determining the ideal temperature. The results of the models (Triclabendazol, Oxfendazol, Mebendazole) (94.92, 93.12, 58.81% and 88.87), (62.61, 44.08%, 98.75, 84.98 and 55.086)% respectively. When mixing the three models in equal proportions, the percentage of loss was 92.8
... Show MoreThis investigation was carried out to study the treatment and recycling of wastewater in the cotton textile industry for an effluent containing three dyes: direct blue, sulphur black and vat yellow. The reuse of such effluent can only be made possible by appropriate treatment method such as chemical coagulation. Ferrous and ferric sulphate with and without calcium hydroxide were employed in this study as the chemical coagulants.
The results showed that the percentage removal of direct blue ranged between 91.4 and 94 , for sulphur black ranged between 98.7 and 99.5 while for vat yellow it was between 97 and 99.
Furfural is a toxic aromatic aldehyde that can cause a severe environmental problem especially the wastewater drown from petroleum refinery units. In the present work, a useless by-product from local furniture manufacturing industry; sawdust was used as raw material for the preparation of activated carbon which is chemically activated with phosphoric acid. The effect of adsorption variables which include initial pH of solution (2-9), agitation speed (50-250) rpm, agitation time (15-120) min, initial concentration of furfural (50-250) ppm, and amount of adsorbent material (0.5-2.5) g for the three adsorbents used (prepared activated carbon, commercial activated carbon and raw sawdust) were investigated in a batch process
... Show MoreThe emergence of such widespread pharmaceuticals as a pollutant has become one of the world's critical environmental problems that may lead to both the public's health and biodiversity deterioration. This article provides an exhaustive account of the current understanding of the environmental persistence of pharmaceutical contaminants following in-depth analysis of the additive effects of existing natural biodegradation pathways on the human health impact of these drugs. Paying special attention to biodegradation decomposing agents such as bacteria, fungi, and algae the paper estimates their ability to convert drug ingredients to compound that is eventually less toxic. Although these biologic systems contain an enormous potential fo
... Show MoreBackground: The use of Miswak, chewing sticks (salvadorapersica) can be traced back to Babylonians some 7000 years ago. It is commonly used throughout the world especially for the purpose of oral hygiene. Muslims are using as the religious view. Current study aimed to test the ability of aqueous siwak extract to increase the resistance of enamel surface against acid dissolution compared to sodium fluoride. Materials and Method: Twenty maxillary first premolars were treated with the selected solutions included two aqueous siwak extract concentration(5%,10%) and sodium fluoride(0.05%)as control positive for 2 minutes once daily for 20days interval, de ionized water was used as control negative. The concentration of the dissolved phosphorus i
... Show MoreA study conducted a laboratory experiment to measure the release of potassium and the dissolution of feldspar minerals in soils from different locations in Karbala Province (Ain Al-tamur, Qasr Al-Akhyar, Fadak Farm). The study involved the addition of organic acids (fulvic and humic) and mineral acids (sulfuric and phosphoric) at concentrations of 5% and 10% to sand-separated soil samples obtained through wet sieving. Feldspar minerals were identified using a polarized light microscope, and the percentage of each type of feldspar mineral was calculated. The results demonstrated that organic acids outperformed mineral acids in releasing potassium at both concentrations. Among the organ
This investigation deals with the use of orange peel (OP) waste as adsorbent for removal of nitrate (NO3) from simulated wastewater. Orange peel prepared in two conditions dried at 60C° (OPD) and burning at 500 °C (OPB). The effect of pH: 2-10, contact time: 30- 180 min, sorbent weight: 0.5- 3.0 g were considered. The optimal pH value for NO3 adsorption was found to be 2.0 for both adsorbents. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models. Freundlich model was found to fit the equilibrium data very well with high-correlation coefficient (R2). The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R2
... Show MoreIn this paper flotation method experiments were performed to investigate the removal of lead and zinc. Various parameters such as pH, air flow rate, collector concentrations, collector type and initial metal concentrations were tested in a bubble column of 6 cm inside diameter. High recoveries of the two metals have been obtained by applying the foam flotation process, and at relatively short time 45 minutes . The results show that the best removal of lead about 95% was achieved at pH value of 8 and the best removal of zinc about 93% was achieved
at pH value of 10 by using 100 mg/l of Sodium dodecylsulfate (SDS) as a collector and 1% ethanol as a frother. The results show that the removal efficiency increased with increasing initial m