The aim of this study is to investigate the kinetics of copper removal from aqueous solutions using an electromembrane extraction (EME) system. To achieve this, a unique electrochemical cell design was adopted comprising two glass chambers, a supported liquid membrane (SLM), a graphite anode, and a stainless-steel cathode. The SLM consisted of a polypropylene flat membrane infused with 1-octanol as a solvent and bis(2-ethylhexyl) phosphate (DEHP) as a carrier. The impact of various factors on the kinetics constant rate was outlined, including the applied voltage, initial pH of the donor phase solution, and initial copper concentration. The results demonstrated a significant influence of the applied voltage on enhancing the rate of c
... Show MoreThe synthesis of ligands with N2S2 donor sets that include imine, an amide, thioether, thiolate moieties and their metal complexes were achieved. The new Schiff-base ligands; N-(2-((2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio)-acetamide (H2L1) and N-(2-((2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio) acetamide (H2L2) were obtained from the reaction of amine precursors with 1,4-dithian-2-one in the presence of triethylamine as a base in the CHCl3 medium. Complexes of the general formula K2[M(Ln)Cl2], (where: M = Mn (II), Co(II) and Ni(II)) and [M(Ln)], (where: M = Cu(II), Zn(II) and Cd(II); n =1-2, expect [Cu(HL2)Cl]) were isolated. The entity of ligands and
... Show MoreThe investigation of determining solutions for the Diophantine equation over the Gaussian integer ring for the specific case of is discussed. The discussion includes various preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings show the existence of infinitely many solutions. Since the analytical method used here is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.
Two series of bent and liner core mesogen containing 1,2,4-traizole ring [VI]a,g and series were synthesized by many steps starting from esterification of isophthalic acid and terephathalic acid with methanol to yield diester compound [I]a,b which was converted to their acid hydrazide [II]a,b and the acid hydrazide reacted with ammonium thiocyanate or diester reacted with thiosemicarbazide to yield compounds [III]a,b. Then cyclization by 4% NaOH to yielded 1,2,4 traizole-3- thiol compounds [IV]a,b , afterword adding hydrazine hydrate to yield compounds [V]a,b. These compounds condensated with different substituted aldehyde to give new Schiff bases[VI]a,b ,[VII]a,b . Also , reaction acid hydrazide [II]a,b with aldehyde [VII] to yielded Schif
... Show MoreCoupling reaction of 2-amino benzoic acid with the 8-hydroxy quinoline gave the azo ligand (H2L): 5-(2-benzoic acid azo )-8-hydroxy quinoline.Treatment of this ligand with some metal ions (CoII, NiII and CuII ) in ethanolic medium with a (1:2) (M:L) ratio yielded a series of neutral complexes with general Formula[M(HL)2],where: M=Co(II), Ni(II) and Cu(II), HL=anion azo ligand (-1).The prepared complexes were characterized using flame atomic absorption,FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements.
Nitrogen-comprising heterocyclic compounds and their derivatives have empirically been invaluable as therapeutic agents. Fundamentally, 4-chloro-6-nitro-2-amino-1,3-benzothiazole 1 was synthesized via bromination of 2-chloro-4-nitro aniline with ammonium thiocyanate. This new heterocyclic haloorganoamino-1,3-benzothiazole derivative, was a starting material, which condensed and tethered with three different aromatic aldehyde pendant arm in presence of ethanol and glacial acetic acid isolating an interesting sequence of tridentate Schiff bases 2-4. These compounds were used for complexation reactions in 1:1 (metal: ligand) stoichiometry to obtain heteroleptic Al(III), Ni (II) and K(I) benzothiazole chelat
... Show MoreThree azo compounds were synthesized in two different methods, and characterized by FT-IR, HNMR andVis) spectra, melting points were determined. The inhibitory effects of prepared compounds on the activity of human serum cholinesterase have been studied in vitro. Different concentrations of study the type of inhibition. The results form line weaver-Burk plot indicated that the inhibitor type was noncompetitive with a range (33.12-78.99%).
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector-borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that ama
... Show MoreThe reaction of 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one with one equivalent of 4-chlorophenol by coupling reaction afforded (E)-4-((5-chloro-2- hydroxyphenyl)diazenyl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one. Then azo ligand was characterize using spectroscopic studies ( FTIR,UV-Vis, 1H and 13CNMR, Mass) also micro-elemental analysiz (C.H.N.O). Transition metal chelation with Co(II), Ni(II), Cu(II), and Zn(II) was investigated, revealing 1:2 metal-to-ligand stoichiometry with octahedral geometry. The biological, and industrial application for the azo ligand and it is complexes were evaluated, demonstrating antimicrobial activity against bacterial and fungal strains, with the Zn(II) complex exhibiting superior inhibition. Additionally,
... Show More