In this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
In this paper, we study the convergence theorems of the Modified Ishikawa iterative sequence with mixed errors for the uniformly continuous mappings and solving nonlinear uniformly continuous mappings equation in arbitrary real Banach space.
A new distribution, the Epsilon Skew Gamma (ESΓ ) distribution, which was first introduced by Abdulah [1], is used on a near Gamma data. We first redefine the ESΓ distribution, its properties, and characteristics, and then we estimate its parameters using the maximum likelihood and moment estimators. We finally use these estimators to fit the data with the ESΓ distribution
Background: The insertion torque (IT) values and implant stability quotient (ISQ) values are the measurements most used to assess primary implant stability. This study aimed to assess the relationship between ISQ values and IT. Materials and methods: This study included 24 patients with a mean (SD) age of 47.9 (13.64) years (range 25-75 years). The patients received 42 dental implants (DI), 33 in the mandible and 9 in the maxilla. The DI were installed using the motorized method with 35 Ncm torque, When DI could not be inserted to the requisite depth by the motorized method, a hand ratchet was used and the IT was recorded as ˃ 35 Ncm. Implant stability was measured utilizing Osstell® ISQ. The secondary stability was measured after 16
... Show MoreIn this paper it was presented the idea quasi-fully cancellation fuzzy modules and we will denote it by Q-FCF(M), condition universalistic idea quasi-fully cancellation modules It .has been circulated to this idea quasi-max fully cancellation fuzzy modules and we will denote it by Q-MFCF(M). Lot of results and properties have been studied in this research.
Let R be a commutative ring with unity .M an R-Module. M is called coprime module (dual notion of prime module) if ann M =ann M/N for every proper submodule N of M In this paper we study coprime modules we give many basic properties of this concept. Also we give many characterization of it under certain of module.
Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.
Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,ï) there exists a submodule X of ï such that f (N) ïƒ X ≈ M, where ï is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in ï embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N. Moreover, we generalize some properties of weakly N-injectiv
... Show MoreLet R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.