The use of worn-out agricultural nozzles in pesticide application has a negative effect on the efficiency and cost of the application process. It also has an effect on environmental pollution due to an excessive amount of pesticide being applied when spraying with worn-out nozzles. In this paper, the resistance to wear of three different internal design hydraulic nozzles was ascertained. Changes in the flow rate and spray distribution as a result of this wear were also investigated. The wear test was done inside a closed system, and it was accelerated using an abrasive material to generate 100 h of wear. The tested nozzles were the Turbo TeeJet (TT)-twin chambered, Turbo Twinjet (TTj60)-dual outlet, and Drift Guard (DG)-pre-orifice. Wear rate, flow rate, and the virtual coefficient of variation (CVv) were measured at different wear intervals. The results showed that the TTj60 type was the most resistant to wear, followed by the TT type and DG. The latter two types showed an increase in the flow rate only in the first 45 h of wear. Virtual coefficient of variation (CVv) values were less than 10% after finishing the test (after 100 h of wear) for the three types of nozzles, which are acceptable values according to International Organization for Standardization (ISO) 16122-2, 2015.
The effective insulation design of the stress grading (SG) system in form-wound stator coils is essential for preventing partial discharges and excessive heat generation under pulse-width modulation excitation. This paper proposes a method to find the optimal insulation design of the SG system aimed at reducing the dielectric and thermal stresses in the machine coil. The non-uniform transmission line model is used to predict the voltage propagation along the overhang, SG, and slot regions considering the variation in the physical properties of the insulation layers. The machine coil parameters for different insulation materials are calculated by using the finite element method. Two optimization algorithms, fmincon and particle swarm optimiz
... Show MoreThe research is conducted on target of investigating the role of growth strategy via diversification in value maximization of a firm in terms of controversies literatures had witnessed. Using a descriptive approach for analyzing and verifying the harmony of variables of research and their conceptualized logic , it could be reached to many conclusions agreed in their essence upon that the related diversification has the major role in value maximization of a firm and the wealth of its owners .
Foundations supporting reciprocating engines, radar towers, turbines, large electric motors, and generators, etc. are subject to vibrations caused by unbalanced machine forces as well as the static weight of the machine. If these vibrations are excessive, they may damage the machine or cause it not to function properly. In the case of block foundation, if changes in size and mass of the foundation do not lead to a satisfactory design, a pile foundation may be used. In this study, the dynamic response of piles and pile Groups in dry sand is investigated experimentally. The analysis involves the displacement response under harmonic excitation. In addition, a numerical modeling by using finite element method with a three-dimensional formula
... Show MoreEncasing glass fiber reinforced polymer (GFRP) beam with reinforced concrete (RC) improves stability, prevents buckling of the web, and enhances the fire resistance efficiency. This paper provides experimental and numerical investigations on the flexural performance of RC specimens composite with encased pultruded GFRP I-sections. The effect of using shear studs to improve the composite interaction between the GFRP beam and concrete was explored. Three specimens were tested under three-point loading. The deformations, strains in the GFRP beams, and slippages between the GFRP beams and concrete were recorded. The embedded GFRP beam enhanced the peak loads by 65% and 51% for the composite specimens with and without shear connectors,
... Show MoreThe research included studying the effect of different plowing depths (10,20and30) cm and three angles of the disc harrows (18,20and25) when they were combined in one compound machine consisting of a triple plow and disc harrows tied within one structure. Draft force, fuel consumption, practical productivity, and resistance to soil penetration. The results indicated that the plowing depth and disc angle had a significant effect on all studied parameters. The results showed that when the plowing depth increased and the disc angle increased, leads to increased pull force ratio, fuel consumption, resistance to soil penetration, and reduce the machine practical productivity.
This study reports testing results of the transient response of T-shape concrete deep beams with large openings due to impact loading. Seven concrete deep beams with openings including two ordinary reinforced, four partially prestressed, and one solid ordinary reinforced as a reference beam were fabricated and tested. The effects of prestressing strand position and the intensity of the impact force were investigated. Two values for the opening’s depth relative to the beam cross-section dimensions were inspected under the effect of an impacting mass repeatedly dropped from different heights. The study revealed that the beam’s transient deflection was increased by about 50% with gre
Concrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show MoreA simple, low cost and rapid flow injection turbidimetric method was developed and validated for mebeverine hydrochloride (MBH) determination in pharmaceutical preparations. The developed method is based on forming of a white, turbid ion-pair product as a result of a reaction between the MBH and sodium persulfate in a closed flow injection system where the sodium persulfate is used as precipitation reagent. The turbidity of the formed complex was measured at the detection angle of 180° (attenuated detection) using NAG dual&Solo (0-180°) detector which contained dual detections zones (i.e., measuring cells 1 & 2). The increase in the turbidity of the complex was directly proportional to the increase of the MBH concentration
... Show More