Preferred Language
Articles
/
rxYjFIcBVTCNdQwCRzSP
Influence of DC magnetron sputtering reaction gas on structural and optical characteristics of Ce-oxide thin films
...Show More Authors

The influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.1 eV) were derived from the UV–Vis reflectance. A significant change in the band gap was observed as oxygen/argon flow ratio was raised from 7% to 14% and this finding is consistent with the high-resolution XPS analysis of Ce 3d that reports a mixture of Ce2O3 and CeO2 in the films. Density functional theory (DFT+U) implemented in the Cambridge Serial Total Energy Package (CASTEP) was carried out to simulate the optical constants of CeO2 clusters at ground state. The computed electronic density of states (DOSs) of the optimized unit cell of CeO2 yields a band gap that agrees well with the experimentally measured optical band gap. The simulated and measured absorption coefficient (α) exhibited a similar trend and, to some extent, have similar values in the wavelength range from 100 to 2500 nm. The combined results of this study demonstrate good correlation between the theoretical and experimental findings.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 04 2014
Journal Name
International Journal Of Current Engineering And Technology
The Mechanisms of AC-conductivity for Ge0.4Te0.6 Thin Films
...Show More Authors

The Ge0.4Te0.6 alloy has been prepared. Thin films of Ge0.4Te0.6 has been prepared via a thermal evaporation method with 4000A thickness, and rate of deposition (4.2) A/sec at pressure 2x10-6 Torr. The A.C electrical conductivity of a-Ge0.4Te0.6 thin films has been studied as a function of frequency for annealing temperature within the range (423-623) K, the deduced exponent s values, was found to decrease with increasing of annealing temperature through the frequency of the range (102-106) Hz. It was found that, the correlated barrier hopping (CBH) is the dominant conduction mechanism. Values of dielectric constant ε1 and dielectric loss ε2 were found to decrease with frequency and increase with temperature. The activation energies have

... Show More
Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Physical Properties of Cu Doped ZnO Nanocrystiline Thin Films
...Show More Authors

Thin films of ZnO nano crystalline doped with different concentrations (0, 6, 9, 12, and 18 )wt. % of copper were deposited on a glass substrate via pulsed laser deposition method (PLD). The properties of ZnO: Cu thin-nanofilms have been studied by absorbing UV-VIS, X-ray diffraction (XRD) and atomic force microscopes (AFM). UV-VIS spectroscopy was used to determine the type and value of the optical energy gap, while X-ray diffraction was used to examine the structure and determine the size of the crystals.  Atomic force microscopes were used to study the surface formation of precipitated materials. The UV-VIS spectroscopy was used to determine the type and value of the optical energy gap.

View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Increasing Carbon Concentration Increasing on the Mechanical Properties of TiCx Thin Films
...Show More Authors

Carbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.

View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Materials Science-poland
Electrical and thermal characteristics of MWCNTs modified carbon fiber/epoxy composite films
...Show More Authors
Abstract<p>To enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm<sup>−1</sup> corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm<sup>−1</sup> is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm<sup>−1</sup> corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm<sup>−1</sup> and 2862 cm<sup>−1</sup> ar</p> ... Show More
View Publication
Scopus (33)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Journal Of Laser
The influence of no-core fibre length on the sensitivity Optical fibre Humidity sensor
...Show More Authors

Abstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability.  Furthermore, the sensor is shif

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 04 2016
Journal Name
Iraqi Journal Of Physics
Thickness and gamma-ray effect on physical properties of CdO thin films grown by pulsed laser deposition
...Show More Authors

Polycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4

... Show More
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Thickness and gamma-ray effect on physical properties of CdO thin films grown by pulsed laser deposition
...Show More Authors

Polycrystalline Cadmium Oxide (CdO) thin films were prepared
using pulsed laser deposition onto glass substrates at room
temperature with different thicknesses of (300, 350 and 400)nm,
these films were irradiated with cesium-137(Cs-137) radiation. The
thickness and irradiation effects on structural and optical properties
were studied. It is observed by XRD results that films are
polycrystalline before and after irradiation, with cubic structure and
show preferential growth along (111) and (200) directions. The
crystallite sizes increases with increasing of thickness, and decreases
with gamma radiation, which are found to be within the range
(23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Structural and Electrical Properties of InSb Films Prepared By Flash Evaporation Technique
...Show More Authors

 Indium antimony (InSb) alloy were prepared successfully. The InSb films were prepared by flash thermal evaporation technique on glass and Si p-type substrate at various substrate temperatures (Ts= 423,448,473, and 498 K).       The compounds concentrations for prepared alloy were examined by using Atomic Absorption Spectroscopy (AAS) and X-ray fluorescence (XRF). The structure of prepared InSb alloy and films deposited at various Ts were examined by X-ray diffraction (XRD).It was found that all prepared InSb alloy and films were polycrystalline with (111) preferential direction .       The electrical properties of the films are studied with the varying Ts. It is found that

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
Effect of the Dielectric Barrier Discharge Plasma on the Optical Properties of CDS Thin Film
...Show More Authors

Cadmium sulphide CdS films with 200 nm have been prepared by thermal evaporation technique on glass substrate at substrate room temperature under vacuum of 10-5mbar.In this paper, the effect of Dielectric Barrier Discharge plasma on the optical properties of the CdS film. The prepared films were exposed to different time intervals (0, 3, 5, 8) min. For every sample, the Absorption A, absorption coefficient α , energy gap Eg ,extinction coefficient K and dielectric constant ε were studied. It is found that the energy gap were decreased with exposure time, and absorption , Absorption coefficient, refractive index, extinction coefficient,  dielectric constant increased with time of exposure to the plasma. Our study conside

... Show More
View Publication Preview PDF
Crossref (2)
Clarivate Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
The Influence of the Magnetic Field on the Plasma Characteristics in Hollow Electrodes Discharge System
...Show More Authors

      This work is an experimental study about the effects of gas pressure and magnetic field on plasma characteristics produced in an internal hollow electrodes discharge (HED) system. The results show that the breakdown voltage values increase with increasing the working pressure (especially with the presence of a magnetic field). The breakdown voltage depends on the p.d. product, where p is the gas pressure and d is the distance between the electrodes. While the values of current discharge decrease with the increase of the working pressure. The temperature of electron and the number density of electron are calculated from the Boltzmann method and the broadening of Stark, respectively. The results showed that the electron number d

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref