Background: zirconium (Zr) implants are known for having an aesthetically pleasing tooth-like colour Unlike the grey cervical collar that develops over time when titanium (Ti) implants are used in thin gingival biotypes. However, the surface qualities of Zr implants can be further improved. This present study examined using thermal vapour deposition (TVD) to coat Zr implants with germanium (Ge) to improve its physical and chemical characteristics and enhance soft and hard tissue responses. Materials and methods: Zr discs were divided into two groups; the uncoated (control) group was only grit-blasted with alumina particles while the coated (experimental) group was grit-blasted then coated with Ge via TVD. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), water contact angle test, and cross-hatch adhesion tests were then used for surface characterization Results: An XRD analysis of the Ge-coated Zr samples revealed the substrate while the FESEM results revealed a continuous coating with no cracks. The mean surface roughness and hydrophilicity of the Ge-coated Zr substrate was significantly higher than that of the uncoated Zr substrate (
Tin dioxide doped silver oxide thin films with different x content (0, 0.03, 0.05, 0.07) have been prepared by pulse laser deposition technique (PLD) at room temperatures (RT). The effect of doping concentration on the structural and electrical properties of the films were studied. Atomic Force Measurement (AFM) measurements found that the average value of grain size for all films at RT decrease with increasing of AgO content. While an average roughness values increase with increasing x content. The electrical properties of these films were studied with different x content. The D.C conductivity for all films increases with increasing x content. Also, it found that activation energies decrease with increasing of AgO content for all films.
... Show MoreBackground: In recent years, the immediate loading of dental implants has become more accepted as a standard protocol for the treatment of the edentulous area. Success in implant dentistry depends on several parameters that may improve phenomenon of osseointegration and new bone formation in close contact with the implant. The aim of study was to evaluate the effect of strontium chloride coating of screw shape commercially pure titanium dental implant osseointegration at bone - implant interface by histomorphometric analysis and compare with hydroxyapatite coating at 2 time periods (2 weeks and 6 weeks). Materials and methods: Electrophoretic Deposition Technique (EPD) was used to obtain a uniform coating layer on commercially pure titanium
... Show MoreSpin coating technique has been applied in this work to prepared Xerogel films doped with Rhodamine 6G laser dyes. The solid host of laser dye modifies its spectroscopic properties with respect to liquid host. During the spin coating process the dye molecules suffer from changing their environment. The effects of three parameters were studied here: the spinning speed, multilayer coating and formaldehyde addition
Background: Recently with improvement of dental implantology science, osseointegrated implants show a considerable durability, however; failures are not completely avoidable. Matrix metalloproteinase-2 (MMP-2) expression is disturbed in many pathological conditions such as peri-implantitis and periodontitis. This study was carried out to investigate the tissue expression of MMP-2 in the extracellular matrix of osseointegrated and diseased implants. Subjects and methods: Gingival biopsies were collected from six patients having osseointegrated or working implants and twenty with diseased or non osseointegrated implants and (6) controls having no implants. In situ hybridization technique was used to analyze the changes in immunoreactivity of
... Show MoreKlebsilla pneumoniae is one of must opportunistic pathogens that causes nosocomial infection, UTI, respiratory tract infections and blood infections. ZrO2 nanoparticles have antimicrobial activity against some pathogenic bacteria and fungi. Ceftazidime is one of third generation cephalosporins groups of antibiotecs, characterized by its broad spectrum on bacteria in general and particularly on Enterobacteriaceae family like Klebsiella spp. Method: Diverse clinical samples of Klebsilla pneumoniae were isolated from several hospitals in Baghdad – Iraq and ZrO2 nanoparticles was investigated against it. Ceftazidime was also investigated against K. pneumoniae. Both of ZrO2 nanoparticles and ceftazidime were mixed together and investigated aga
... Show MoreHydatidosis is a sickness that affects human and farm animals. This disease is deemed as a public health problem in different regions of the world until nowadays. Surgical overlaps is the best way to treat the disease, while the risk of surgery lies in the possibility of cyst rupture and leakage of protoscolices and the recurrence of infection again, this prompted researchers to use scolicidal agents before surgery such as ethanol, plant extracts, to reduce parasite spread and recurrence of infection, recently researchers have been using nanoparticles as a scolicidal agent, like gold nanoparticles, silver nanoparticles, selenium nanoparticles, and others. This research aims to evaluate the fatal effect of zirconium oxide (ZrO2) nanoparticle
... Show MorePure and Fe-doped zinc oxide nanocrystalline films were prepared
via a sol–gel method using -
C for 2 h.
The thin films were prepared and characterized by X-ray diffraction
(XRD), atomic force microscopy (AFM), field emission scanning
electron microscopy (FE-SEM) and UV- visible spectroscopy. The
XRD results showed that ZnO has hexagonal wurtzite structure and
the Fe ions were well incorporated into the ZnO structure. As the Fe
level increased from 2 wt% to 8 wt%, the crystallite size reduced in
comparison with the pure ZnO. The transmittance spectra were then
recorded at wavelengths ranging from 300 nm to 1000 nm. The
optical band gap energy of spin-coated films also decreased as Fe
doping concentra
This work studied the electrical and thermal surface conductivity enhancement of polymethylmethacrylate (PMMA) clouded by double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotube (MWCNTs) by using pulsed Nd:YAG laser. Variable input factors are considered as the laser energy (or the relevant power), pulse duration and pulse repetition rate. Results indicated that the DWCNTs increased the PMMA’s surface electrical conductivity from 10-15 S/m to 0.813×103 S/m while the MWCNTs raised it to 0.14×103 S/m. Hence, the DWCNTs achieved an increase of almost 6 times than that for the MWCNTs. Moreover, the former increased the thermal conductivity of the surface by 8 times and the later by 5 times.