Preferred Language
Articles
/
rhh2dZQBVTCNdQwCdRhG
Overlapping Structure Detection in Protein-Protein Interaction Networks Using a Modified Version of Particle Swarm Optimization
...Show More Authors

In today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and hard optimization problem. One of the main difficulties in identifying overlapping protein complexes is the accuracy of the partitioning results. In order to accurately identify the overlapping structure of protein complexes, this paper has proposed an overlapping complex detection algorithm termed OCDPSO-Net, which is based on PSO-Net (a well-known modified version of the particle swarm optimization algorithm). The framework of the OCDPSO-Net method consists of three main steps, including an initialization strategy, a movement strategy for each particle, and enhancing search ability in order to expand the solution space. The proposed algorithm has employed the partition density concept for measuring the partitioning quality in PPI network complexes and tried to optimize the value of this quantity by applying the line graph concept of the original graph representing the protein interaction network. The OCDPSO-Net algorithm is applied to a Collins PPI network and the obtained results are compared with different state-of-the-art algorithms in terms of precision ( ), recall ( ), and F-measure ( ). Experimental results confirm that the proposed algorithm has good clustering performance and has outperformed most of the existing recent overlapping algorithms. .

Scopus Crossref
View Publication
Publication Date
Tue Jun 01 2021
Journal Name
2021 Ieee/cvf Conference On Computer Vision And Pattern Recognition Workshops (cvprw)
Alps: Adaptive Quantization of Deep Neural Networks with GeneraLized PositS
...Show More Authors

View Publication
Scopus (13)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Some K-Banhatti Polynomials of First Dominating David Derived Networks
...Show More Authors

Chemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Aug 18 2018
Journal Name
Journal Of Engineering And Applied Sciences
Performance Evaluation of Transport Protocols for Mobile Ad Hoc Networks
...Show More Authors

Mobile Ad hoc Networks (MANETs) is a wireless technology that plays an important role in several modern applications which include military, civil, health and real-time applications. Providing Quality of Service (QoS) for this application with network characterized by node mobility, infrastructure-less, limitation resource is a critical issue and takes greater attention. However, transport protocols effected influential on the performance of MANET application. This study provides an analysis and evaluation of the performance for TFRC, UDP and TCP transport protocols in MANET environment. In order to achieve high accuracy results, the three transport protocols are implemented and simulated with four different network topology which are 5, 10

... Show More
View Publication
Publication Date
Sun May 07 2017
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
DETECTION OF MINERAL AND MICROBIAL CONTAMINATION IN CEREAL AND IT,S PRODUCTS: DETECTION OF MINERAL AND MICROBIAL CONTAMINATION IN CEREAL AND IT,S PRODUCTS
...Show More Authors

The results shows existence of metals such as copper, iron, Cadmium, lead and zinc in most of examined samples , the highest concentration are up to (2.26, 40.82, 282.5, 31.02, 19.26, 4.34) Part per million) ppm) in pasta hot (Zer brand), Indomie with chicken, granule (Zer brand), brand (Zer brand), and rice (mahmood brand) respectively, with presence nickel in spaghetti( Zer brand), granule, Zer brand with concentration reached to 4.34 ppm and 1.06 ppm respectively.
The results of cereals group and its products show that two kinds of fungi, Aspergillus spp. and Penicillin spp. were found in rice (Mahmood brand) with numbers got to 1.5×103 Colony Forming Unit/ gram (c.f.u./g),while Bacillus cereus and Staphylococcus aureus were isola

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Inorganic Chemistry Communications
Detection of nitrotyrosine (Alzheimer's agent) by B24N24 nano cluster: A comparative DFT and QTAIM insight
...Show More Authors

A nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN na

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed May 04 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when

... Show More
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
A Magnetic Field Concentration Method for Magnetic Flux Leakage Detection of Rail-Top Surface Cracks
...Show More Authors

View Publication
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Thu Jun 20 2024
Journal Name
Ingénierie Des Systèmes D Information
Enabling Technologies for Ultra-Low Latency and High-Reliability Communication in 6G Networks
...Show More Authors

View Publication Preview PDF
Scopus (15)
Crossref (9)
Scopus Crossref