In today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and hard optimization problem. One of the main difficulties in identifying overlapping protein complexes is the accuracy of the partitioning results. In order to accurately identify the overlapping structure of protein complexes, this paper has proposed an overlapping complex detection algorithm termed OCDPSO-Net, which is based on PSO-Net (a well-known modified version of the particle swarm optimization algorithm). The framework of the OCDPSO-Net method consists of three main steps, including an initialization strategy, a movement strategy for each particle, and enhancing search ability in order to expand the solution space. The proposed algorithm has employed the partition density concept for measuring the partitioning quality in PPI network complexes and tried to optimize the value of this quantity by applying the line graph concept of the original graph representing the protein interaction network. The OCDPSO-Net algorithm is applied to a Collins PPI network and the obtained results are compared with different state-of-the-art algorithms in terms of precision ( ), recall ( ), and F-measure ( ). Experimental results confirm that the proposed algorithm has good clustering performance and has outperformed most of the existing recent overlapping algorithms. .
Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
Neural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
The penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreA simple, accurate, and cost-efficient UV-Visible spectrophotometric method has been developed for the determination of naphazoline nitrate (NPZ) in pure and pharmaceutical formulations. The suggested method was based on the nucleophilic substitution reaction of NPZ with 1,2-naphthoquinone-4-sulfonate sodium salt in alkaline medium at 80°C to form an orange/red-colored product of maximum absorption (λmax) at 483 nm. The stoichiometry of the reaction was determined via Job's method and limiting logarithmic method, and the mechanism of the reaction was postulated. Under the optimal conditions of the reaction, Beerʼs law was obeyed within the concentration range 0.5–50 μg/mL, the molar absorptivity value (ε) was 5766.5 L × mol–1 × c
... Show MoreThe possibility of predicting the mass transfer controlled CaCO3 scale removal rate has been investigated.
Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.
Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .
The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope
... Show MoreThe purpose of this paper is to find the best multiplier approximation of unbounded functions in –space by using some discrete linear positive operators. Also we will estimate the degree of the best multiplier approximation in term of modulus of continuity and the averaged modulus.
In this study, concentrations of radon and uranium were measured for twenty six samples of soil. The radon concentrations in soil samples measured by registrant alpha-emitting radon (222Rn) by using CR-39 track detector. The uranium concentrations in soil samples measured by using registrar fission fragments tracks in CR-39 track detector that caused by the bombardment of U with thermal neutrons from 241 Am-Be neutron source that has flux of 5 ×103n cm-2 s-1.
The concentrations values were calculated by a comparison with standard samples The results show that the radon concentrations are between (91.931-30.645Bq/m3).
The results show that also the uranium concentrat
The process of stocks evaluating considered as a one of challenges for the financial analysis, since the evaluating focuses on define the current value for the cash flows which the shareholders expected to have. Due to the importance of this subject, the current research aims to choose Fama & French five factors Model to evaluate the common stocks to define the Model accuracy in Fama& French for 2014. It has been used factors of volume, book value to market value, Profitability and investment, in addition to Beta coefficient which used in capital assets pricing Model as a scale for Fama & French five factors Model. The research sample included 11 banks listed in Iraq stock market which have me
... Show More