Preferred Language
Articles
/
rheMnpEBVTCNdQwC-pYP
optical pulse propagation in photonic bandgap fiber Bragg grating
...Show More Authors

Abstract: In this work we demonstrate and investigate the optical pulse propagation in a photonic band gap fiber Bragg grating (FBG). The light propagates in opposite direction in FBG is explained and discussed by a Coupled Mode Theory (CMT). The photonic band gap (stop band gap) is created by fabricated, a Bragg grating in optical fiber. The results show the pulse spectrum falls entirely within the stop band gap, the entire pulse is reflected by the grating, while when the pulse spectrum is outside the stop band gap the pulses will transmitted through the grating. The group velocity (VG) becomes zero at the edges of the stop band and group velocity dispersion β2 is anomalous on the shorter side of stop band gap whereas β2 for uniform fiber becomes anomalous for wavelengths lower than the zero dispersion.

Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Design and Construction Optical Pumping System
...Show More Authors

In this work the design and construction of optical pumping system was presented. The parameters of the pumping source to obtain discharge current density sufficient to shift the flash lamp spectrum towards uv portion of spectrum were measured.The current density was supplied to the flash lamp must be greater than 4000Amp./cm2 to obtain the spectral range wavelength lies between 0.2 and 0.35?m. The current density was obtained by a capacitor 50?F, at 7KV discharge voltage. The applied electrical energy to the flash lamp was more than 1200 J, and the current density was around 5000 Amp./cm2.The electrical parameters of the flash lamp were calculated. The impedance parameters(K0) from the voltage and the peak current pulse was measured in ran

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Optical Properties of GaN Thin Flim
...Show More Authors

GaN thin films were deposited by thermal evaporation onto
glass substrates at substrate temperature of 403 K and a thickness of
385 nm . GaN films have amorphous structure as shown in X-ray
diffraction pattern . From absorbance data within the range ( 200-
900 ) nm direct optical energy gap was calculated . Also the others
optical parameters like transmittance T, reflectance R , refractive
index n , extinction coefficient k , real dielectric constant 1 Î , and
imaginary dielectric constant 2 Î were determined . GaN films
have good absorbance and minimum transmittance in the region of
the visible light .

View Publication Preview PDF
Publication Date
Sun Dec 07 2008
Journal Name
Baghdad Science Journal
Optical Properties for SeTe Thin Films
...Show More Authors

Chalcogenide glasses SeTe have been prepared from the high purity constituent elements .Thin films of SeTe compound have been deposited by thermal evaporation onto glass substrates for different values of film thickness . The effect of varying thickness on the value of the optical gap is reported . The resultant films were in amorphous nature . The transmittance spectra was measured for that films in the wavelength range (400-1100) nm . The energy gap for such films was determined .

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Optical properties of CdO thin films
...Show More Authors

Cadmium Oxide thin films were deposited on glass substrate by spray pyrolysis technique at different temperatures (300,350,400, 500)oC. The optical properties of the films were studied in this work. The optical band-gap was determined from absorption spectra, it was found that the optical band-gap was within the range of (2.5-2.56)eV also width of localized states and another optical properties.

View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Modeling and Simulation for Performance Evaluation of Optical Quantum Channels in Quantum key Distribution Systems
...Show More Authors

In this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 prot

... Show More
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Radioelectronics And Communications Systems
Optical CDMA Coded STBC Based on Chaotic Technique in FSO Communication Systems
...Show More Authors

Free-Space Optical (FSO) can provide high-speed communications when the effect of turbulence is not serious. However, Space-Time-Block-Code (STBC) is a good candidate to mitigate this seriousness. This paper proposes a hybrid of an Optical Code Division Multiple Access (OCDMA) and STBC in FSO communication for last mile solutions, where access to remote areas is complicated. The main weakness effecting a FSO link is the atmospheric turbulence. The feasibility of employing STBC in OCDMA is to mitigate these effects. The current work evaluates the Bit-Error-Rate (BER) performance of OCDMA operating under the scintillation effect, where this effect can be described by the gamma-gamma model. The most obvious finding to emerge from the analysis

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Crossref
Publication Date
Sat Jan 05 2019
Journal Name
Iraqi Journal Of Physics
Study of optical bistability in a fully optimized laser Fabry-Perot system
...Show More Authors

The analytical study of optical bistability is concerned in a fully
optimized laser Fabry-Perot system. The related phenomena of
switching dynamics and optimization procedure are also included.
From the steady state of optical bistability equation can plot the
incident intensity versus the round trip phase shift (φ) for different
values of dark mistuning 




12
,
6
,
3
,
1.5
0 , o
   
 or finesse (F= 1, 5, 20,
100). In order to obtain different optical bistable loops. The inputoutput
characteristic for a nonlinear Fabry-Perot etalon of a different
values of finesse (F) and using different initial detuning (φ0) are used
in this rese

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 15 2011
Journal Name
Iraqi Journal Of Laser
The Optical Limiting Behaviour of Prepared Silver Nanoparticles Embedded in Polymer Film
...Show More Authors

In the present work, silver nanoparticles were prepared. Nonlinear optical properties and
optical limiting of silver nanoparticles were investigated.Standard chemical synthesis method was used at
diffrent weight ratio(0.038, 0.058 and 0.078) of silver nitrate. Several testing were done to obtain the
characteristics of the sample. Z-Scan experiments were performed using 30 ns Q-switched Nd:YAG
laser at 1064 nm and 532 nm at different intensities. The results showed that the nonlinear refractive
index is directly proportional to the input intensities, which caused by the self-focusing of the material.
In addition, the optical limiting behavior has been studied. The results showed that the sample could be
used as an opt

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
International Journal Of Intelligent Engineering And Systems
Dynamic Virtual Network Embedding with Latency Constraint in Flex-Grid Optical Networks
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Materials Science-poland
Electrical and thermal characteristics of MWCNTs modified carbon fiber/epoxy composite films
...Show More Authors
Abstract<p>To enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm<sup>−1</sup> corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm<sup>−1</sup> is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm<sup>−1</sup> corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm<sup>−1</sup> and 2862 cm<sup>−1</sup> ar</p> ... Show More
View Publication
Scopus (39)
Crossref (36)
Scopus Clarivate Crossref