Abstract: In this work we demonstrate and investigate the optical pulse propagation in a photonic band gap fiber Bragg grating (FBG). The light propagates in opposite direction in FBG is explained and discussed by a Coupled Mode Theory (CMT). The photonic band gap (stop band gap) is created by fabricated, a Bragg grating in optical fiber. The results show the pulse spectrum falls entirely within the stop band gap, the entire pulse is reflected by the grating, while when the pulse spectrum is outside the stop band gap the pulses will transmitted through the grating. The group velocity (VG) becomes zero at the edges of the stop band and group velocity dispersion β2 is anomalous on the shorter side of stop band gap whereas β2 for uniform fiber becomes anomalous for wavelengths lower than the zero dispersion.
Abstract: The increased interest in developing new photonic devices that can support high data rates, high sensitivity and fast processing capabilities for all optical communications, motivates a pre stage pulse compressor research. The pre-stage research was based on cascading single mode fiber and polarization maintaining fiber to get pulse compression with compression factor of 1.105. The demand for obtaining more précised photonic devices; this work experimentally studied the behavior of Polarization maintaining fiber PMF that is sandwiched between two cascaded singe mode fiber SMF and fiber Bragg gratings FBG. Therefore; the introduced interferometer performed hybrid interference of both Mach-Zehnder
... Show MoreDue to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The simulation shows the behavior of optical
... Show MoreAbstract
Due to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The sim
... Show MoreSIFCON is characterized as a construction material of high ductility and very high strength. It is suitable for concrete structures used for special applications. However, the density of SIFCON is much higher than that of Fiber Reinforced Concrete (FRC) due to the need for a large amount of high-density steel fibers. This work examines the split tensile behavior of modified weight slurry infiltrated fiber concrete utilizing a mixture of two types of fibers, steel fiber, and polyolefin fiber. For the investigation, 30 cylinders and 15 cubes were poured. The used volume fraction (V.F) is (6 %) and the use of five series once as each type separately and once a hybrid in proportions of 2/3 polyolefin with 1/3 steel fiber and
... Show MorePhotoplethysmography (PPG) is a non-invasive optical technique that employs variations in light absorption produced by alteration in the blood volume in capillaries at the skin during the cardiac cycle. This study aims to understand factors related to PPG morphology; a hand-elevation, the study has modified blood flow to and from the finger was conducted in the laboratory. It is widely established that the position of the limb relative to the heart has an effect on blood flow in arteries and venous. Peripheral digital pulse wave (DPW) signals were obtained from 15 healthy volunteer participants during hand-elevation, and hand-lowering techniques wherein the right hand was lifted and lowered relative to heart level, while the left h
... Show MoreThe importance of physical and nonphysical architectural design values made architectural designers need good experience to be experts of architectural values reasonably without neglecting any value in the design process. The importance of such values made that ignoring any values and mistakes occurs in the design process. Simultaneously, architectural designers' different nature and the difference in their experiences are causing different understandings of the design values, thus causing architectural mistakes. The research problem appears from the randomly propagating of mistakes in contemporary architecture, which is about to become a phenomenon in Al Sulaymaniyah city. The research aims to find the main reason
... Show MoreTo demonstrate the effect of changing cavity length for FM mode locked on pulse parameters and make comparison for both dispersion regime , a plot for each pulse parameter as Lr function are presented for normal and anomalous dispersion regimes . The analysis is based on the theoretical study and the results of numerical simulation using MATLAB. The effect of both normal and anomalous dispersion regimes on output pulses is investigate Fiber length effects on pulse parameters are investigated by driving the modulator into different values. A numerical solution for model equations using fourth-fifth order, Runge-Kutta method is performed through MATLAB 7.0 program. Fiber length effect on pulse parameters is investigated by driving th
... Show MoreIn this work, a reactive DC magnetron sputtering technique was used to prepare TiO2 thin films. The variation in argon and oxygen gases mixing ratios (4:1, 2:1, 1:1, 1:2, 1:4) was used to achieve optimal properties for gas sensing. In addition, an analysis of the optical XRD properties of TiO2 thin films is presented. High-quality and uniform nanocrystalline films were obtained at a working gas pressure of 0.25 mbar and 1:4 (Ar/O2) gas mixture. The optical properties showed a transparent thin film with uniform adherence to the substrate. The average transmission of the TiO2 films deposited on the glass substrates was higher than 95% over the range of 400 to 800 nm.
... Show More