Huge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zigzag scan is applied on the quantized coefficients and the output are encoded using DPCM, shift optimizer and shift coding for DC while adaptive RLE, shift optimizer then shift coding applied for AC, the other subbands; LH, HL and HH are compressed using the scalar quantization, Quadtree and shift optimizer then shift coding. In this paper, a new flipping block with an adaptive RLE is proposed and applied for image enhancement. After applying DCT system and scalar quantization, huge number of zeros produced with less number of other values, so an adaptive RLE is used to encode this RUN of zeros which results with more compression.Standard medical images are selected to be used as testing image materials such as CT-Scan, X-Ray, MRI these images are specially used for researches as a testing samples. The results showed high compression ratio with high quality reconstructed images
In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
Encryption of data is translating data to another shape or symbol which enables people only with an access to the secret key or a password that can read it. The data which are encrypted are generally referred to as cipher text, while data which are unencrypted are known plain text. Entropy can be used as a measure which gives the number of bits that are needed for coding the data of an image. As the values of pixel within an image are dispensed through further gray-levels, the entropy increases. The aim of this research is to compare between CAST-128 with proposed adaptive key and RSA encryption methods for video frames to determine the more accurate method with highest entropy. The first method is achieved by applying the "CAST-128" and
... Show MoreThe aim of this work was to develop and validate a rapid and low cost method for estimation of ibuprofen in pharmaceutical suspensions using Reverse-Phase High Performance Liquid Chromatography. The proposed method was conducted and validated according to International Conference on Harmonization (ICH) requirements. The chromatographic parameters were as follows: column of octyldecylsilyl C18 with dimensions (150 × 4.6) mm, mobile phase composed of acetonitrile with phosphoric acid with a ratio of 50 to 50 each using isocratic mode, flow rate of 1.5 mL/min and injection volume of 5 μL. The detection was carried out using UV detector at 220 nm. The method was validated and showed short retention time for ibuprofen peak at 7.651 min, wit
... Show MoreKlebsiella pneumoniae is an adaptable pathogen that forms biofilms on a variety of surfaces. This study's objective was to identify the presence of fimbrial genes (types 1 and 3) in K. pneumoniae strains isolated from various clinical sources based on their antibiotic resistance and ability to form biofilms. According to identification utilizing the vitek 2 technology and confirmation by molecular identification targeting the 16S rRNA gene with a particular primer, forty isolates were identified from clinical specimens. The vitek 2 compact system was utilized to evaluate the antibiotic susceptibility of all the isolates. The findings revealed a range of resistance percentages, including 52.5% for Penicillin, 40.5% for Trimethoprim/S
... Show MoreIn the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreThis paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
The virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr