Huge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zigzag scan is applied on the quantized coefficients and the output are encoded using DPCM, shift optimizer and shift coding for DC while adaptive RLE, shift optimizer then shift coding applied for AC, the other subbands; LH, HL and HH are compressed using the scalar quantization, Quadtree and shift optimizer then shift coding. In this paper, a new flipping block with an adaptive RLE is proposed and applied for image enhancement. After applying DCT system and scalar quantization, huge number of zeros produced with less number of other values, so an adaptive RLE is used to encode this RUN of zeros which results with more compression.Standard medical images are selected to be used as testing image materials such as CT-Scan, X-Ray, MRI these images are specially used for researches as a testing samples. The results showed high compression ratio with high quality reconstructed images
One of the most popular and legally recognized behavioral biometrics is the individual's signature, which is used for verification and identification in many different industries, including business, law, and finance. The purpose of the signature verification method is to distinguish genuine from forged signatures, a task complicated by cultural and personal variances. Analysis, comparison, and evaluation of handwriting features are performed in forensic handwriting analysis to establish whether or not the writing was produced by a known writer. In contrast to other languages, Arabic makes use of diacritics, ligatures, and overlaps that are unique to it. Due to the absence of dynamic information in the writing of Arabic signatures,
... Show MoreA new colorimetric-flow injection method has been developed and validated for the detection of Cefotaxime sodium in pharmaceutical formulations. This method stands out for its rapid and sensitive nature. The formation of a brown-colored complex between Cefotaxime sodium and the Biuret reagent in a highly alkaline environment serves as the basis for the detection. The intensity of this colored complex is measured using a custom-built Continuous Flow Injection Analyzer, enabling accurate quantification of Cefotaxime sodium. Optimization studies of the chemical and physical parameters such as dilution of Biuret reagent, effect of the medium basicity, flow rate, sample loop and others have been investigated. The calibration gra
... Show MoreIn this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin
... Show MoreThis paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions and for exponentially fitting problems, with being the problem’s major frequency utilized to improve the precision of the method. The modified method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a framework of equations that can be sol
... Show MoreMany numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
A numerical method is developed for calculation of the wake geometry and aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady motion in an inviscid incompressible flow (panel method). The method is applied to sudden change in airfoil incidence angle and airfoil oscillations at high reduced frequency. The effect of non-linear wake on the unsteady aerodynamic properties and oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The results of the present method shows good accuracy as compared with flat plate and for unsteady motion with heaving and pitching oscillation the present method also shows good trend with the experimental results taken from published data. The method shows good result
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
In this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.