There are many diseases that affect the arteries, especially those related to their elasticity and stiffness, and they can be guessed by estimating and calculating the modulus of elasticity. Hence, the accurate calculation of the elastic modulus leads to an accurate assessment of these diseases, especially in their early stages, which can contribute to the treatment of these diseases early. Most of the calculations used the one-dimensional (1D) modulus of elasticity. From a mechanical point of view, the stresses to which the artery is subjected are not one-dimensional, but three-dimensional. Therefore, estimating at least a two-dimensional (2D) modulus of elasticity will necessarily be more accurate. To the knowledge of researchers, there is a lack of published research on this subject, as well as a paucity of research that designed and implemented a 2D tensile testing device (2DTTD). However, there is no inspection of arterial flexibility and elasticity using the 2DTTD adequately studied before. Therefore, the aim of this work is to design and implement the 2DTTD to scrutinize if there is a difference between the 1D and 2D tensile examination. Different sized rectangular silicone specimens were manually fabricated; they were tested individually using the fabricated 2DTTD, which mainly comprises four actuators synchronously working with the same velocity and axial load force, two at each axis. As expected using the 2DTTD, the dimensions of the specimen remarkably influence the tensile testing results; the strain and stress rates and the modulus of elasticity were influenced. To validate the acquired 2D tensile testing results, the 1D tensile testing was performed using the same fabricated 2DTTD and compared to results gained using another tensile testing apparatus. During the verification process, the input data for models calibration were sufficiently and accurately provided. The results showed reasonable precision and reliability in calculations of the 2D stress and strain rates during the whole deformation process. Each mechanical device that has been used has the possibility to stretch and squeeze the sample and log the change in the specimen elongation. The authors thought that the present experimental methodology was applied to the linear mechanical device successfully, where the encoder that is attached to tested samples was in the principal direction. The present method is used to measure the deformation in a manner that differs from the traditional digital image correlation method, which required a toolset that is more expensive, where it incorporates high-accuracy optical equipment.
A localized stenosis or aneurysm is a discontinuity that presents the pulse wave produced by the contracting heart with a reflection site. However, neither wave speed ( c) in these discontinuities nor the size of reflection in relation to the size of the discontinuity has been adequately studied before. Therefore, the aim of this work is to study the propagation of waves traversing flexible tubes in the presence of aneurysm and stenosis in vitro. We manufactured different sized four stenosis and four aneurysm silicone sections, connected one at a time to a flexible ‘mother’ tube, at the inlet of which a single semi-sinusoidal wave was generated. Pressure and velocity were measured simultaneously 25 cm downstream the inlet of th
... Show MoreAbstract. In this paper, a high order extended state observer (HOESO) based a sliding mode control (SMC) is proposed for a flexible joint robot (FJR) system in the presence of time varying external disturbance. A composite controller is integrated the merits of both HOESO and SMC to enhance the tracking performance of FJR system under the time varying and fast lumped disturbance. First, the HOESO estimator is constructed based on only one measured state to precisely estimate unknown system states and lumped disturbance with its high order derivatives in the FJR system. Second, the SMC scheme is designed based on such accurate estimations to govern the nominal FJR system by well compensating the estimation errors in the states and the lumped
... Show MoreThe molluscicidal effects of herbicide 2, 4-D were studied against tow species of freshwater snail Bulinus truncatus and Melanopsis nodosa by short term experiments. Calculated values of lethal concentrations (LC50 and LC100) were maid to two spices for different period of time 24hr, 48hr, 72hr and 96hr. The study had showed that the herbicide 2, 4-D was toxic against the tow species. The toxicity of the herbicide was low or unknown in low concentrations in the first period of exposure 24and 48hr to two spices but it increase gradually with increase period of exposure. The spice of B.truncatus was more tolerant than the M.nodosa. All the individual of M nodosa was death while in B.truncatus the complete death was not appear until finish the
... Show MoreThe effect of UV-light on the tensile properties of pure PC has been studied. It was shown that irradiation of PC undergo a drop in the tensile properties of 30 hour of exposure. The results of irradiated samples shows that the addition of ZnO and TiO2 with different percentages (0.5, 1, 1.5 %) will reduce the Young modulus and ultimate stress of PC/ZnO ,PC/ TiO2 composites
Horizontal wells are of great interest to the petroleum industry today because they provide an attractive means for improving both production rate and recovery efficiency. The great improvements in drilling technology make it possible to drill horizontal wells with complex trajectories and extended for significant depths.
The aim of this paper is to present the design aspects of horizontal well. Well design aspects include selection of bit and casing sizes, detection of setting depths and drilling fluid density, casing, hydraulics, well profile, and construction of drillstring simulator. An Iraqi oil field (Ajeel field) is selected for designing horizontal well to increase the productivity. Short radius horizontal well is suggested fo
In this work, a step-index fiber with core index and cladding index has been designed. Single-mode operation can be obtained by using a fiber with core diameters 4–13 µm operating at a wavelength of 1.31 µm and by 4–15 µm at 1.55 µm. The fundamental fiber mode properties such as phase constant, effective refractive index, mode radius, effective mode area and the power in the core were calculated. Distributions of the intensity and the amplitude were shown.
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show More