There are many diseases that affect the arteries, especially those related to their elasticity and stiffness, and they can be guessed by estimating and calculating the modulus of elasticity. Hence, the accurate calculation of the elastic modulus leads to an accurate assessment of these diseases, especially in their early stages, which can contribute to the treatment of these diseases early. Most of the calculations used the one-dimensional (1D) modulus of elasticity. From a mechanical point of view, the stresses to which the artery is subjected are not one-dimensional, but three-dimensional. Therefore, estimating at least a two-dimensional (2D) modulus of elasticity will necessarily be more accurate. To the knowledge of researchers, there is a lack of published research on this subject, as well as a paucity of research that designed and implemented a 2D tensile testing device (2DTTD). However, there is no inspection of arterial flexibility and elasticity using the 2DTTD adequately studied before. Therefore, the aim of this work is to design and implement the 2DTTD to scrutinize if there is a difference between the 1D and 2D tensile examination. Different sized rectangular silicone specimens were manually fabricated; they were tested individually using the fabricated 2DTTD, which mainly comprises four actuators synchronously working with the same velocity and axial load force, two at each axis. As expected using the 2DTTD, the dimensions of the specimen remarkably influence the tensile testing results; the strain and stress rates and the modulus of elasticity were influenced. To validate the acquired 2D tensile testing results, the 1D tensile testing was performed using the same fabricated 2DTTD and compared to results gained using another tensile testing apparatus. During the verification process, the input data for models calibration were sufficiently and accurately provided. The results showed reasonable precision and reliability in calculations of the 2D stress and strain rates during the whole deformation process. Each mechanical device that has been used has the possibility to stretch and squeeze the sample and log the change in the specimen elongation. The authors thought that the present experimental methodology was applied to the linear mechanical device successfully, where the encoder that is attached to tested samples was in the principal direction. The present method is used to measure the deformation in a manner that differs from the traditional digital image correlation method, which required a toolset that is more expensive, where it incorporates high-accuracy optical equipment.
Azo dyes like methyl orange (MO) are very toxic components due to their recalcitrant properties which makes their removal from wastewater of textile industries a significant issue. The present study aimed to study their removal by utilizing aluminum and Ni foam (NiF) as anodes besides Fe foam electrodes as cathodes in an electrocoagulation (EC) system. Primary experiments were conducted using two Al anodes, two NiF anodes, or Al-NiF anodes to predict their advantages and drawbacks. It was concluded that the Al-NiF anodes were very effective in removing MO dye without long time of treatment or Ni leaching at in the case of adopting the Al-Al or NiF-NiF anodes, respectively. The structure and surface morphology of the NiF electrode were inves
... Show MoreRetreatment Efficacy of Continuous Rotation Versus Reciprocation Kinematic Movements in Removing Gutta-Percha with Calcium Silicate-Based Sealer: SEM Study, Raghad Noori Nawaf*, Ra
APDBN Rashid, Review of International Geographical Education Online (RIGEO), 2021
The regular job of a reservoir engineer is to put a development plan to increase hydrocarbon production as possible and within economic and technical considerations. The development strategy for the giant reservoir is a complex and challenging task through the decision-making analysis process. Due to the limited surface water treatment facility, the reservoir management team focuses on minimizing water cut as low as possible by check the flow of formation and injected water movement through the Mishrif reservoir. In this research, a representative sector was used to make the review of water injection configuration, which is considered an efficient tool to make study in a particular area of the entire field when compared with the ful
... Show MoreAtenolol was used with povidone iodine to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between atenolol and povidone iodine in an aqueous medium. Optimum parameters was studied to increase the sensitivity development of method. Calibration graph was linear in the range of 2-19 mmol/L for cell A and 5-19 mmol/L for cell B. Limit of detection 146.4848 ng/55 µL and 2.6600 µg/200 µL respectively to cell A and cell B. Correlation coefficient (r) 0.9957 for cell A and 0.9974 for cell. Relative standard deviation (RSD %) was lower than 1%, (n=8) for the determination of
... Show MoreThis study was aimed to investigate the effect of anti- type 4 pili antibody in
prevention pulmonary infections caused by P. aeruginosa in vivo. This was
achieved by Evaluation of biofilm formation by the microtiter plate method to
select P.aeruginosa isolate with highest biofilm formation capacity, Extraction
and the partial purification of type IV pili from the selected isolate, then
Preparation of type IV pili antibodies by rabbit immunization. The lung
histological sections of non immunized mice were severly damaged ,while the
damage were markedly decrease in the lung of immunized mice with anti-type 4
pili antibody.