There are many diseases that affect the arteries, especially those related to their elasticity and stiffness, and they can be guessed by estimating and calculating the modulus of elasticity. Hence, the accurate calculation of the elastic modulus leads to an accurate assessment of these diseases, especially in their early stages, which can contribute to the treatment of these diseases early. Most of the calculations used the one-dimensional (1D) modulus of elasticity. From a mechanical point of view, the stresses to which the artery is subjected are not one-dimensional, but three-dimensional. Therefore, estimating at least a two-dimensional (2D) modulus of elasticity will necessarily be more accurate. To the knowledge of researchers, there is a lack of published research on this subject, as well as a paucity of research that designed and implemented a 2D tensile testing device (2DTTD). However, there is no inspection of arterial flexibility and elasticity using the 2DTTD adequately studied before. Therefore, the aim of this work is to design and implement the 2DTTD to scrutinize if there is a difference between the 1D and 2D tensile examination. Different sized rectangular silicone specimens were manually fabricated; they were tested individually using the fabricated 2DTTD, which mainly comprises four actuators synchronously working with the same velocity and axial load force, two at each axis. As expected using the 2DTTD, the dimensions of the specimen remarkably influence the tensile testing results; the strain and stress rates and the modulus of elasticity were influenced. To validate the acquired 2D tensile testing results, the 1D tensile testing was performed using the same fabricated 2DTTD and compared to results gained using another tensile testing apparatus. During the verification process, the input data for models calibration were sufficiently and accurately provided. The results showed reasonable precision and reliability in calculations of the 2D stress and strain rates during the whole deformation process. Each mechanical device that has been used has the possibility to stretch and squeeze the sample and log the change in the specimen elongation. The authors thought that the present experimental methodology was applied to the linear mechanical device successfully, where the encoder that is attached to tested samples was in the principal direction. The present method is used to measure the deformation in a manner that differs from the traditional digital image correlation method, which required a toolset that is more expensive, where it incorporates high-accuracy optical equipment.
Background: Complete seal of the root canal system following its chemo-mechanical debridement plays a pivotal role for achieving successful endodontic treatment. This can be established by reducing the gaps between the core filling material and root canal wall. Aim: To assess and compare the dislocation resistance of root canals obturated with GuttaFusion® and TotalFill BC sealer versus single cone obturation technique and TotalFill BC sealer after instrumentation of the canals with WaveOne, ProTaper Next and ProTaper Universal system. Material and Method: Sixty extracted human permanent mandibular premolars were conducted in the current study. The teeth were decorated and left the root with 15mm length; the roots were divided randomly i
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreBackground: Strangles is a highly contagious equine respiratory disease caused by Streptococcus equi subsp. equi. It is a globally significant pathogen and one of the most common infectious agents in horses. In Iraq, no sequencing data on this pathogen are available, and only two molecular studies have been published to date. This study provides preliminary insights into strain diversity and provides a foundation for future large-scale investigations. Aim: This study aimed to investigate the molecular characteristics, identify SeM gene alleles, and perform a phylogenetic analysis of S. equi isolates from horses in Baghdad, Iraq. Methods: We analyzed 59 Streptococcus spp. isolates previously obtained from equine clinical sample
... Show MoreThe Vulnerable Indian Roofed Turtle Pangshura tecta (Gray, 1831) (Testudines: Geoemydidae) occurs in the Sub-Himalayan lowlands of India, Nepal, Bangladesh, and Pakistan. Little is known about its natural history, no studies have been conducted revealing its natural predators. In this study, a group of Large-billed Crow Corvus macrorhynchos Wagler, 1827 (Passeriformes: Corvidae) was observed hunting and predating on an Indian Roofed Turtle carcass in the bank of river Kuakhai, Bhubaneswar, India. The first record of this predation behaviour is reported and substantiated by photographic evidence.
Ischemic heart disease is a major causes of heart failure. Heart failure patients have predominantly left ventricular dysfunction (systolic or diastolic dysfunction, or both). Acute heart failure is most commonly caused by reduced myocardial contractility, and increased LV stiffness. We performed echocardiography and gated SPECT with Tc99m MIBI within 263 patients and 166 normal individuals. Left ventricular end systolic volume (LVESV), left ventricular end diastolic volume (LVEDV), and left ventricular ejection fraction (LVEF) were measured. For all degrees of ischemia, there was a significant difference between ejection fraction values measured by SPECT and echo
The gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show More