Non-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hollow longitudinally sectioned and retrofitted with carbon fibre reinforced polymers (CFRPs), which were subjected to concentrated vertical loads. The numerical analysis results on the simulated beam models were in excellent agreements with the previous experimental test results. This convergence was confirmed by a statistical analysis, which considered the correlation coefficients, individual arithmetic means and standard deviations for all the calculated deflections of the simulated beam models. A proposed numerical simulation model with the hypotheses can be considered suitable for modelling the behaviours of simple supported non-prismatic RC beams under vertical concentrated loads. The numerical results showed that altering the cross-section from solid to hollow could reduce the load carrying capacities of the beams by up to 53% and increase the corresponding deflections by up to 40%, respectively. Using steel pipes for making recesses could enhance the loading capacity by up to 56%, increase the ductility, and reduce the corresponding deflections by up to 30%, respectively. Finally, it was found that bonding the CFRP sheets in the lower middle tensile areas of the hollow beams could improve the resistance and reduce the deformations by up to 27%. The failure patterns for all the numerical models were shear failure. The cylinder compressive strength could be used as a mechanical parameter for modelling and assessing the structural behaviours of the beam models, as its increase could improve the load carrying capacities and reduce the deflections by 30–50%.
One of the most important problems that faces the concrete industry in Iraq is the deterioration due to internal sulfate attack , since it reduces the compressive strength and increases the expansion of concrete. Consequently, the concrete structure may be damage .The effects of total and total effective sulfate contents on high strength concrete (HSC) have been studied in the present study. The research studied the effect of sulfate content in cement , sand and gravel , as well as comparing the total sulfate content with the total effective SO3 content. Materials used were divided into two groups of SO3 in cement ,three groups of SO3 in sand ,and two groups of SO3 in gravel. The results show that considering the total effective sulfate con
... Show MoreThe performance of flexible pavements is significantly impacted by the permanent deformation (rutting) of asphalt pavements. Rutting shortens the pavement's useful service life and poses significant risks to those using the highway since it alters vehicle handling characteristics.. The aim of this research is to evaluate the permanent deformation of asphalt mixtures under different conditions,to achieve this aim 108 cylindrical specimens has been prepared and tested under repeated loading in uniaxial compression mode. Five factors were considered in this research, these factors represent the effect of environmental condition and traffic loading as well as mixture properties, they include testing temperature, loading condition (stress level
... Show MoreThe present investigation considers the effect of curing temperatures (30, 40, and 50˚C) and curing compound method on compressive strength development of high performance concrete, and compares the results with concrete cured at standard conditions and curing temperature (21˚C). The experimental results showed that at early ages, the rate of strength development at high curing temperature is greater than at lower curing temperature, the maximum increasing percentage in compressive strength is 10.83% at 50C˚ compared with 21C˚ in 7days curing age. However, at later ages, the strength achieved at higher curing temperature has been less, and the maximum percentage of reduction has been 5.70% at curing temperature 50C˚ compared with 21
... Show MoreNo-fine concrete (NFC) is cellular concrete and it’s light weight concrete produced with the exclusion of sand from the concrete. This study includes the mechanical properties of lightweight reinforced by steel fiber, containing different proportions of steel fiber. This study was done using number of tests. These tests were density, compressive strength, flexural strength and absorption. These tests of the molds at different curing time. The results of tests that implication of fiber to No. fine concrete did not affect significantly on the compressive strength, While the flexural strength were gets better. Results explained that, the flexural strength of (1%) fiber No- fine concrete molds are four times that of the reference mold
... Show MoreDuring the last quarter century, many changes have taken place in the tanks industry and also in the materials that used in its production، while concrete is the most suitable material where concrete tanks has the benefits of strength, long service life and cost effectiveness. So, it is necessary improvement the
conventional concrete in order to adapt the severe environment requirements and as a result high
performance concrete (HPC) was used. It is not fundamentally different from the concrete used in the past, although it usually contains fly ash, ground granulated blast furnace slag and silica fume, as well as
superplasticizer. So, the content of cementitious material is high and the water/cement ratio is low. In this
stu
Despite widespread agreement on the beneficial nature of hydrated lime (HL) addition to asphalt concrete mixes, understanding of the effect of HL particle size is still limited. Previous investigations have focused mainly on two different size comparisons, and so certain guidance for a practical application cannot yet be produced. This study investigates three distinct sizes of HL, in the range of regular, nano, and sub-nano scales, for their effects on the properties of modified asphalt concretes. Five different percentages of HL as a partial replacement of ordinary limestone filler in asphalt concrete mixes were studied for wearing course application purposes. Experimental tests were conducted to evaluate the mechanical properties
... Show MoreAs an alternative to Ordinary Portland Cement (OPC), the alkali-activated binders have been developed with better technical characteristics and more extended durability. The Alkali-Activated Iraqi Natural Pozzolans (AANP) could produce geopolymer cementation building materials and make them ecologically acceptable. The primary advantage of geopolymer cement is that it has a lower environmental effect that contributes to it. The engineering characteristics of geopolymer concrete produced using activated Iraqi natural Pozzolan are summarized in this research. The mechanical properties, modulus of elasticity, and ultrasonic pulse velocity of various concrete mixes were determined via experimental study. The impact of essential variables like w
... Show MorePortland cement is considered the most involved product in environmental pollution. It is responsible for about 10% of global CO2 emissions [1]. Limestone dust is a by-product of limestone plants and it is produced in thousands of tons annually as waste material. To fulfill sustainability requirements, concrete production is recommended to reduce Portland cement usage with the use of alternative or waste materials. The production of sustainable high strength concrete by using nanomaterials is one of the aims of this study. Limestone dust in 12, 16, and 20% by weight of cement replaced cement in this study. The study was divided into two parts: the first was devoted to the investigation of the best percentage of replacement of waste
... Show MoreSelf-compacted concrete (SCC) is a highly flowable concrete, with no segregation which can be spread into place by filling the structures framework and permeate the reinforcement without any compaction or mechanical consolidation ACI 237R-14. One of the most important problems faced by concrete industry in Iraq and Gulf Arab land is deterioration due to internal sulfate attack (ISA) that causes damage of concrete and consequently reduces its compressive strength, increases expansion and may lead to its cracking and destruction. The experimental program was focused to study two ordinary Portland cements with different chemical composition with (5, 10 and 15) % percentage of high reactivity metakaoline (HRM)
... Show More