Preferred Language
Articles
/
rhajCYcBVTCNdQwCfzDP
Structural Efficiency of Non-Prismatic Hollow Reinforced Concrete Beams Retrofitted with CFRP Sheets
...Show More Authors

Non-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hollow longitudinally sectioned and retrofitted with carbon fibre reinforced polymers (CFRPs), which were subjected to concentrated vertical loads. The numerical analysis results on the simulated beam models were in excellent agreements with the previous experimental test results. This convergence was confirmed by a statistical analysis, which considered the correlation coefficients, individual arithmetic means and standard deviations for all the calculated deflections of the simulated beam models. A proposed numerical simulation model with the hypotheses can be considered suitable for modelling the behaviours of simple supported non-prismatic RC beams under vertical concentrated loads. The numerical results showed that altering the cross-section from solid to hollow could reduce the load carrying capacities of the beams by up to 53% and increase the corresponding deflections by up to 40%, respectively. Using steel pipes for making recesses could enhance the loading capacity by up to 56%, increase the ductility, and reduce the corresponding deflections by up to 30%, respectively. Finally, it was found that bonding the CFRP sheets in the lower middle tensile areas of the hollow beams could improve the resistance and reduce the deformations by up to 27%. The failure patterns for all the numerical models were shear failure. The cylinder compressive strength could be used as a mechanical parameter for modelling and assessing the structural behaviours of the beam models, as its increase could improve the load carrying capacities and reduce the deflections by 30–50%.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 11 2022
Journal Name
Journal Of Petroleum Research And Studies
The Structural and Stress Analysis of Hemrin North Structure, North of Iraq.
...Show More Authors

  The study focused on the results of first paleostress from thrust fault slip data on Tertiary age of Hemrin North Structure, North of Iraq. The stress inversion was performed for fault slip data using an improved right dihedral model, and then followed by rotational optimization (Georient Software). The trend of the principal stress axes (σ1, σ2 and σ3) and the ratio of the principal stress differences (R) show the main paleostress field is NE-SW compression regime. As well as using Lisle graph and Mohr diagram to determine the magnitudes of palestress.  The values paleostress of the study area were σ1=1430 bars, σ2=632 bars and σ3=166 bar. The large magnitudes of the primary stress axes could be attributed to active tecto

... Show More
View Publication
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Investigation of Structural, Mechanical, Thermal and Optical Properties of Cu Doped TiO2
...Show More Authors

In this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Influence of substrate temperature on structural and optical properties of SnO2 films
...Show More Authors

Tin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K

View Publication Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
Study of Some Structural Properties of Porous Silicon Preparing by Photochemical Etching
...Show More Authors

Abstract:Porous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too. The XRD has been studied to determine the crystal structure and the crystalline size of PSi material

Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Synthesis of Sn1-xMnxO2Nanoparticles and study of the structural and optical properties
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Study of the structural and optical properties of CuAlxIn1-xTe2 thin film
...Show More Authors

View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Study of Some Structural Properties of Porous Silicon Preparing by Photochemical Etching
...Show More Authors

Porous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too.
The XRD has been studied to determine the crystal structure and the crystalline size of PSi material

View Publication Preview PDF
Publication Date
Mon May 14 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Investigation of the Structural, Optical and Electrical Properties of AgInSe2 Thin Films
...Show More Authors

  The Silver1Indium1Selenide (AgInSe2) (AIS) thin1films of (3001±20) nm thickness  have been1prepared2from the compound alloys2using thermal evaporation2 technique onto the glass2substrate at room temperature, with a deposition rate2(3±0.1) nm2sec-1.

The2structural, optical and electrical3properties have been studied3at different annealing3temperatures (Ta=450, 550 and 650) K.

The amount3or (concentration) of the elements3(Ag, In, Se) in the  prepared alloy3was verified using  an

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Apr 08 2000
Journal Name
Dirasat Journal [natural And Engineering Sciences Division]
Tension Stiffening in Partially Prestressed Concrete Flexural Members
...Show More Authors

Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Engineering
A Review in Sustainable Plastic Waste in Concrete
...Show More Authors

Recently times, industrial development has increased, including plastic industries, and since plastic has a very long analytical life, it will cause environmental pollution. Therefore studies have resorted to reusing recycled plastic waste (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, some studies were reviewed and then summarized into several things, including the percentage of plastic replacement from the aggregate and the effect of this percentage on the fresh properties of concrete, such as the workability and the effect of plastic waste on the hardening properties of concrete such as dry density, compressive, tensile and flexural strength.

View Publication Preview PDF
Crossref (2)
Crossref