Non-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hollow longitudinally sectioned and retrofitted with carbon fibre reinforced polymers (CFRPs), which were subjected to concentrated vertical loads. The numerical analysis results on the simulated beam models were in excellent agreements with the previous experimental test results. This convergence was confirmed by a statistical analysis, which considered the correlation coefficients, individual arithmetic means and standard deviations for all the calculated deflections of the simulated beam models. A proposed numerical simulation model with the hypotheses can be considered suitable for modelling the behaviours of simple supported non-prismatic RC beams under vertical concentrated loads. The numerical results showed that altering the cross-section from solid to hollow could reduce the load carrying capacities of the beams by up to 53% and increase the corresponding deflections by up to 40%, respectively. Using steel pipes for making recesses could enhance the loading capacity by up to 56%, increase the ductility, and reduce the corresponding deflections by up to 30%, respectively. Finally, it was found that bonding the CFRP sheets in the lower middle tensile areas of the hollow beams could improve the resistance and reduce the deformations by up to 27%. The failure patterns for all the numerical models were shear failure. The cylinder compressive strength could be used as a mechanical parameter for modelling and assessing the structural behaviours of the beam models, as its increase could improve the load carrying capacities and reduce the deflections by 30–50%.
Background: Fertility plays great role in animal reproduction since high quality semen improves sheep industry reproduction. The current worldwide data revealed the closely related of CNP to reproductive function of rams. Aims: Evaluation the effect of CNP on cooled sperms using the traditional and molecular assays. Methods: Totally, 20 testicular samples were collected, processed to obtain the semen samples and divided into two parts; one treated with the suitable dose of CNP and the otherserved as a control. Sperm samples of both groups were cooled for 3 days and tested at 0 0h, 24h, 48h and 72h. Results: The findings revealed that the suitable dose of CNP-treated sperms was 0.0110-13. Values individual motility, live sperm
... Show MoreThe novel groups of organic chromophores containing triphenylamine (TPA) (ATP-I to ATP-IV) have been constructed by structural modification of electron donors with substitution biphenyl and bipyridine rings inserting a π-linkage. Density functional theory (DFT) and time-dependent type of it (TD-DFT) have been operated to study results of donating ability of TPA and spacer on absorption, geometrical, photovoltaic, and energetic attributes of these sensitizers. Structural attributes have been revealed that incorporation of TPA, acceptor and π bridge include a perfect coplanar conformation in TPA-III. Based on frequency computations and ground-state optimization, bandgap (Eg) energy, ELUMO, EHOMO have been determined. For enlightening maximu
... Show MorePolyaniline membranes of aniline were produced using an electrochemical method in a cell consisting of two poles. The effect of the vaccination was observed on the color of membranes of polyaniline, where analysis as of blue to olive green paints. The sanction of PANI was done by FT-IR and Raman techniques. The crystallinity of the models was studied by X-ray diffraction technique. The different electronic transitions of the PANI were determined by UV-VIS spectroscopy. The electrical conductivity of the manufactured samples was measured by using the four-probe technique at room temperature. Morphological studies have been determined by Atomic force microscopy (AFM). The structural studies have been measured by (SEM).
The spectral response of the Si solar cell does not coincidence with the sun irradiance spectrum, so the efficiency of the Si solar cell is not high. To improve the Si solar cell one try to make use of most region of the sun spectrum by using dyes which absorb un useful wavelengths and radiate at useful region of spectrum (by stock shift). Fluorescence's dye is used as luminescent concentrator to increase the efficiency of the solar cell. The results show that the performance efficiency and out power for crystalline silicon solar cells are improved.
Nitrogen (N) and phosphorus (P) are the most important nutrients for crop production. The N contributes to the structural component, generic, and metabolic compounds in a plant cell. N is mainly an essential part of chlorophyll, the compound in the plants that is responsible for photosynthesis process. The plant can get its available nitrogen from the soil by mineralizing organic materials, fixed-N by bacteria, and nitrogen can be released from plant as residue decay. Soil minerals do not release an enough amount of nitrogen to support plant; therefore, fertilizing is necessary for high production. Phosphorous contributes in the complex of the nucleic acid structure of plants. The nucleic acid is essential in protein synthesis regulation; t
... Show MoreNew designs of solar using ray tracing program, have been presented for improved the performance and the out put power of the silicon solar cell, as well as reducing the cost of system working by solar energy. Two dimensional solar concentrator (Fresnel lenses) and three dimensional concentrators (parabola dish and cassegrain) were used as concentrator for photovoltaic applications (CPV). The results show that the performance efficiency and out power for crystalline silicon solar cells are improved.
Transportation networks impact millions of people daily. Their efficiency immediately affects travel time, safety, and environmental sustainability. Unfortunately, various issues hinder the expected performance and efficiency of these networks. Traffic congestion is an up-to-date issue in the urban environment. Fuel consumption is high because travel time has increased, which has a passive environmental impact. Extensive research has been conducted to progress the intelligent transportation systems installed on communication networks and information to treat this congestion. However, there is a significant amount of affront residue in combining real-time data, estimation analytics, and 5G abilities effectively. This paper offers a n
... Show MoreThe efficiency of management is determining factor for the success or failure of agricultural projects generally and Livestock particularly achieving its objectives. Therefore, this research came to diagnose the most important variables that determine the efficiency of management using the probability regression models to measure the probability of management efficient of broilers production projects using random sample included (60) broilers projects represented 11.6% of Baghdad province (research community) in 2016. After estimating the relationship between the management efficiency (descriptive dependent variable) and the independent variables affecting it (age, educational level, production index (PI), experience). The results
... Show MoreThe electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples
... Show More