The formation and structural investigation of three new Mannich bases are reported. The synthesis of these compounds was accomplished via a multicomponent one-pot reaction using CaCl2 as a catalyst. The reaction of the benzaldehyde, m-bromoaniline and cyclohexanone or 4-methylcyclohexanone resulted in the formation of L1 and L3, respectively. The synthesis of L2 was achieved by mixing benzaldehyde, o-bromoaniline and cyclohexanone. The isolated compounds were characterised using a range of analytical and spectroscopic techniques. These include; NMR (1H and 13C-NMR), ESMS, FTIR, electronic spectroscopy, microanalyses and melting points. The NMR data for L1 and L2 indicated the presence of one isomer in solutions, on the NMR time scale. However, the NMR analyses for L3 confirmed the presence of two isomers in the solution. The title compounds are potential materials that may use as complexation agents for metal ions and/or be used as precursors in the formation of new organic compounds including a new type of ligands. The biological activity of the prepared compounds against bacterial and fungi species was also investigated.
In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
Soil stabilization with liquid asphalt is considered as a sustainable step towards roadway construction on problematic subgrade soil, there are no requirements to import good quality materials or to implement energy consumption, but to mix the readily available soil with liquid asphalt through the cold mix technique. In this work, collapsible soil obtained from Nasiriya was mixed with asphalt emulsion, lime, and combinations of lime and asphalt emulsion (combined stabilization) and tested in the laboratory for California bearing ratio in dry and soaked conditions. Field trial sections have been prepared with the same combinations and subjected to plate bearing test. The influence of combined stabilization on the structural properties in ter
... Show MoreZerumbone is a well-known compound having anti-cancer, anti-ulcer, anti-inflammatory and anti-hyperglycemic effects. During its use for the disease treatment, the membrane of erythrocyte can be affected by consumption of this bioactive compound. The current study was the first report of investigation of the hemolytic activities on human erythrocytes and cytotoxic profile of zerumbone. The toxicity of zerumbone on human erythrocytes was determined by in vitro hemolytic assay. Brine shrimp lethality assay was used to evaluate the cytotoxic effect of zerumbone at concentrations 10, 100 and 1000 μg/mL. The human erythrocyte test showed no significant toxicity at low concentrations, whereas hemolytic effect was amplified up to 17.5 % at
... Show MoreZerumbone is a well-known compound having anti-cancer, anti-ulcer, anti-inflammatory and anti-hyperglycemic effects. During its use for the disease treatment, the membrane of erythrocyte can be affected by consumption of this bioactive compound. The current study was the first report of investigation of the hemolytic activities on human erythrocytes and cytotoxic profile of zerumbone. The toxicity of zerumbone on human erythrocytes was determined by in vitro hemolytic assay. Brine shrimp lethality assay was used to evaluate the cytotoxic effect of zerumbone at concentrations 10, 100 and 1000 μg/mL. The human erythrocyte test showed no significant toxicity at low concentrations, whereas hemolytic effect was amplified up to 17.5
... Show MoreThis study reports the fabrication of tin oxide (SnO2) thin films using pulsed laser deposition (PLD). The effect of 60Co (300, 900, and 1200 Gy) gamma radiation on the structural, morphological, and optical features is systematically demonstrated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and ultraviolet-visible light analysis (UV-Vis), respectively In XRD tests, the size of the crystallites decreased from 45.5 to 40.8 nm for the control samples and from 1200 Gy to 60Co for the irradiated samples. Using FESEM analysis, the particle diameter revealed a similar trend to that attained using XRD; in particular, the average diameters were 93.8 and
... Show MoreThe increasing use of antiseptic compounds creates selective pressure cause emergence of antiseptic resistance among Staphylococcus aureus .Resistance mechanism of antiseptic is driven mainly by multi drug resistant (MDR) efflux protein.Sixty five isolates of S.aureuswere collected from different clinical sources and subjected to 11 antibiotics most of them are recognized by efflux systems as extruded substrates. Range of efflux activity was estimated using cartwheel method. Simultaneous discrimination of antiseptic coding genes (qacA/B, smr and norA)as well as nuc and mecA genes among multidrug resistantS.aureus(MRSA) isolates was preformed using multiplex PCR assay
... Show MoreCopper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticle
... Show MoreLignans are natural products widely distributed in the plant kingdom. They are composed of two β-β-linked phenylpropane (shikimate-derived biogenetic subunits). Although the backbone of lignans is composed of phenylpropane units, there is enormous diversity in the structure of lignans leading to different classes of lignans, such as γ-butyrolactone derivatives, eg. Hymatairesinol, bicyclooctadiene derivatives, e.g. pinoresinol, tetrahydrofuran derivatives e.g.lariciresinol, di-arylbutandiol derivatives, e.g. secoisolariciresinol. Introduction of a further carbon –carbon linkage leads to a class of lignans collectively known as cyclolignans such as tetrahydro-naphthalene derivatives, for example podophyllotoxin. Lignans ha
... Show More