Solvents are important components in the pharmaceutical and chemical industries, and they are increasingly being used in catalytic reactions. Solvents have a significant influence on the kinetics and thermodynamics of reactions, and they can significantly change product selectivity. Solvents can influence product selectivity, conversion rates, and reaction rates. However, solvents have received a lot of attention in the field of green chemistry. This is due to the large amount of solvent that is frequently used in a process or formulation, particularly during the purification steps. However, neither the solvent nor the active ingredient in a formulation is directly responsible for the reaction product's composition. Because these characteristics have little bearing on how well or quickly the system in which the solvent is applied works, it appears unnecessary to use toxic, combustible, or environmentally hazardous solvents. However, the beneficial properties of the solvent required for the application are strongly linked to these unfortunate side effects of solvent use. Distillation can be used to recover and purify solvents because they are volatile; however, this process can produce unwanted air pollutants and be hazardous to workers during exposure. .
Abstract Portable communication devices such as WLAN, WiMAX, LTE, ISM, and 5G utilize one or more of the triple bands at (2.32.7 GHz,3.4–3.6GHz,and5–6GHz)andsufferfromtheeffectofmultipathproblemsbecausetheyareusedinurbanregions.To date, no one has performed a review of the antennas used for these types of wireless communications. This study reviewed two types of microstrip antennas (slot and fractal) that have been reported by researchers (as a single element) using a survey that included the evaluation of several important specifications of the antennas in previous research, such as operating bandwidth, gain, efficiency, axial ratio bandwidth (ARBW), and size. The weaknesses in the design of all antennas were carefully identified to de
... Show MoreThe objective of this article is to study the impact of environmental pollution on air, water, and soil quality with a focus on the role of environmental bacteria in bioremediation of pollutants. The research also addresses the ability of some strains of bacteria to remove heavy metals and petroleum hydrocarbons and degrade toxic substances, resulting in improved environmental quality. Outcomes: Empirical studies reveal that environmental pollution leads to significant health and environmental problems, such as a rise in respiratory disease as a result of air pollution, water pollution that affects aquatic life, and soil pollution that decreases crop output. Other bacterial strains such as Pseudomonas, Bacillus, and Streptomyces have also b
... Show MoreNearly, in the middle of 1970s the split-brain theory became the only theory that explains human creativity used in all fine art and art education schools. In fact, this theory- which appeared for first time in the middle of 1940s – faced many radical changes including its concepts and structures, and these changes affected both teaching art and art criticism. To update people awareness within art field of study, this paper reviews the split-brain theory and its relationship with teaching art from its appearance to its decay in 2013 and after.
The influence of process speed (PS) and tillage depth (TD) , on growth of corn (Zea mays L) yield, for Maha cultivar, were tested at two ranges of PS of 2.483 and 4.011 km.hr-1, and three ranges of TD of 15,20 and 25cm. The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the PS of 2.483 km.hr-1 was significantly better than the PS of 4.011km.hr-1 in all studied conditions. The , slippage ratio (SR) and the machine efficiency (ME), the physical soil characteristics represented by the soil density and porosity (SBD and TSP), and the plant characteristics represented the roots dry weight, PVI and the crop productivity (CP), except adjective of the fu
... Show MoreThe synthesis, characterization and mesomorphic properties of two new series of triazine-core based liquid crystals have been investigated. The amino triazine derivatives were characterized by elemental analysis, Fourier transforms infrared (FTIR), 1HNMR and mass spectroscopy. The liquid crystalline properties of these compounds were examined by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). DSC and POM confirmed nematic (N) and columnar mesophase textures of the materials. The formation of mesomorphic properties was found to be dependent on the number of methylene unit in alkoxy side chains.
Copper (I) complex containing folic acid ligand was prepared and characterized on the basis of metal analyses, UV-VIS, FTIR spectroscopies and magnetic susceptibility. The density functional theory (DFT) as molecular modeling calculations was used to determine the donor atoms of folic acid ligand which appear clearly at oxygen atoms binding to hydrogen. Detection of donation sights is supported by theoretical parameters such as geometry, mulliken population, mulliken charge and HOMO-LUMO gap obtained by DFT calculations.
A new 5‐fluorouracil–naproxen conjugate is synthesized as a mutual prodrug for targeting cancer tissues. The structure of the target compound and their intermediate are characterized by their melting point, IR, 1H NMR, 13C NMR, and elemental microanalysis. The cytotoxic activity is preliminarily evaluated using nonsmall lung cancer CRL‐2049, human breast cancer CAL‐51, and one type of normal cell line; rat embryo fibroblast cell line. The synthesized compound shows a good cytotoxic effect at the cancer cell and no significant effect at rat embryo fibroblast cell line.
In this research, CNRs have been synthesized using pyrolysis of plastic waste(pp) at 1000 ° C for one hour in a closed reactor made from stainless steel, using magnesium oxide (MgO) as a catalyst. The resultant carbon nano rods were purified and characterized using energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD). The surface characteristics of carbon rods were observed with the Field emission scanning electron microscopy (FESEM). The carbon was evenly spread and had the highest concentration from SEM-EDX characterization. The results of XRD and FESEM have shown that carbon Nano rods (CNRs) were present in Nano figures, synthesized at 1000 ° C and with pyrolysis temperature 400° C. One of t
... Show More