This study is conducted to identify the microbial content of some types of infant milk formula available in the local markets of the city of Baghdad and their conformity microbial limits sited by the Iraqi standard. Seventy samples were collected from trademarks of imported infant milk formula included of five samples of infant milk formula No (1) and five samples of follow-up formula No (2). These samples were collected randomly from shops in the local markets of Baghdad city on both sides of Karkh and Rusafa included the following kinds: Dialac 1, Dialac 2 ,Celia 1, Celia 2 ,Biomil 1, Biomil 2 , Nactalia 1, Nactalia 2, Novalac 1 , Novalac 2 , Similac 1 , imilac 2 , Guigos 1, Guigos 2. Some microbial tests were done which in
... Show MoreToday, the role of cloud computing in our day-to-day lives is very prominent. The cloud computing paradigm makes it possible to provide demand-based resources. Cloud computing has changed the way that organizations manage resources due to their robustness, low cost, and pervasive nature. Data security is usually realized using different methods such as encryption. However, the privacy of data is another important challenge that should be considered when transporting, storing, and analyzing data in the public cloud. In this paper, a new method is proposed to track malicious users who use their private key to decrypt data in a system, share it with others and cause system information leakage. Security policies are also considered to be int
... Show MoreSentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discrimina
... Show MoreReliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co
CIGS nanoink has synthesized from molecular precursors of CuCl, InCl3, GaCl3 and Se metal heat up 240 °C for a half hour in N2-atmosphere to form CIGS nanoink, and then deposited onto substrates of soda-lime glass (SLG). This work focused on CIGS nanocrystals, indicates their synthesis and applications in photovoltaic devices (PVs) as an active light absorber layers. in this work, using spin-coating to deposit CIGS layers (75 mg/ml and 500 nm thickness), without selenization at high temperatures, were obtained up to 1.398 % power conversion efficiency (PCE) at AM 1.5 solar illumination. Structural formations of CIGS chalcopyrite structure were studied by using x ray diffraction XRD. The morphology and composition of CIGS were studied using
... Show MoreThe precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences
... Show MoreWireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More