This paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurement data from IMUs and a goniometer were fed into the suggested Simscape model. The arm torque profiles are key to the control approach and should be traced by torques produced by the exoskeleton actuators to provide comfort and flexibility for the subjects. A DC motor was used as an actuator for the exoskeleton, and its model was used in the physical Simscape model. To reduce the error in the driving torque compared with the reference arm torque, a PID controller was implemented. The results show the potential of our methodology for tracking and controlling the actuator’s torque, in which the mean square error was reduced to less than 0.2 - a significantly low value.
Abstract
The grey system model GM(1,1) is the model of the prediction of the time series and the basis of the grey theory. This research presents the methods for estimating parameters of the grey model GM(1,1) is the accumulative method (ACC), the exponential method (EXP), modified exponential method (Mod EXP) and the Particle Swarm Optimization method (PSO). These methods were compared based on the Mean square error (MSE) and the Mean Absolute percentage error (MAPE) as a basis comparator and the simulation method was adopted for the best of the four methods, The best method was obtained and then applied to real data. This data represents the consumption rate of two types of oils a he
... Show MoreIn this study, the Earth's surface was studied in Razzaza Lake for 25 years, using remote sensing methods. Images of the satellites Landsat 5 (TM) and 8 (OLI) were used to study and determine the components of the land cover. The study covered the years 1995-2021 with an interval of 5 years, as this region is uninhabited, so the change in the land cover is slow. The land cover was divided into three main classes and seven subclasses and classified using the maximum likelihood classifier with the help of training sets collected to represent the classes that made up the land cover. The changes detected in the land cover were studied by considering 1995 as a reference year. It was found that there was a significant reduction in the water mass
... Show MoreThe impact of COVID-19 pandemic on education models was mainly through the expansion of technology use in the different educational programs. Earlier impact of COVID-19 was manifested in the complete and sudden transition to distance education regardless of institution preparedness status. Gradually, many institutions are moving back to on-campus face-to-face education. However, others including all higher education institutions in Iraq are adopting the hybrid education model. This report presents part of the end of semester evaluation survey conducted at the University of Baghdad College of Pharmacy for the Spring 2021 semester. The survey aims to address points of strength and weakness associated with the hybrid education model and spe
... Show MoreBackground: Thalassemia is a hereditary anemia resulting from defects in hemoglobin production. ?- thalassemia caused by decrease in the production of ?- globin chains affect multiple organs and is associated with cranio-oro-facial deformity which include prominent cheek bones and protrusive premaxilla with depression of the nasal bridge often referred to as “rodent or chip-munk face” with small mandible and Cl.II skeletal relationship. This study aimed to investigate cephalometric craniofacial parameters (skeletal) of ?- thalassemic major patients by using computed tomography and to compare findings with a group of healthy patients in the same age group. Subject, Materials and Method: The study included (40) patients with ?- thalassemi
... Show MoreA new copolymer (MFA) was prepared from condensation of melamine (M) with p- methyl – anisole (A) in the presence of condensation agent like 37% (w/v) of formaldehyde. The new copolymer was characterized by elemental, IR and HNMR spectra. The chelating ion-exchange property of this polymer was studied for methylene blue dye in aqueous solution in 100-200ppm concentrations. The adsorption study was carried out over a wide range of pH, shaking time and in media of various kinetic parameters models. Thermal parameters like enthalpy, entropy and Gibbs free energy of adsorption process of methylene blue on surface of MFA resin were determined on the basis of kinetic parameters at different temperatures. To describe the equilibrium of adsorp
... Show MoreAbstract
The purpose of our study was to develop Dabigatran Etexilate loaded nanostructured lipid carriers (DE-NLCs) using Glyceryl monostearate and Oleic acid as lipid matrix, and to estimate the potential of the developed delivery system to improve oral absorption of low bioavailability drug, different Oleic acid ratios effect on particle size, zeta potential, entrapment efficiency and loading capacity were studied, the optimized DE-NLCs shows a particle size within the nanorange, the zeta potential (ZP) was 33.81±0.73mV with drug entrapment efficiency (EE%) of 92.42±2.31% and a loading capacity (DL%) of 7.69±0.17%. about 92% of drug was released in 24hr in a controlled manner, the ex-vivo intestinal p
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show More