Preferred Language
Articles
/
rRavcYcBVTCNdQwCwEpH
Glass Wastes Sorption Efficiency for Removing Cadmium from Aqueous Solutions
...Show More Authors

This research aims to test the ability of glass waste powder to adsorb cadmium from aqueous solutions. The glass wastes were collected from the Glass Manufacturing Factory in Ramadi. The effect of concentration and reaction time on sorption was tested through a series of laboratory experiments. Four Cd concentrations (20, 40, 60, and 80) as each concentration was tested ten times for 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 min. Solid (glass wastes) to liquid was 2g to 30ml was fixed in each experiment where the total volume of the solution was 30ml. The pH, total dissolved salts and electrical conductivity were measured at 30ºC. The equilibrium concentration was determined at 25 minutes, thereafter it was noted that the sorption (%) decreased whenever increasing Cd concentration. Langmuir and Freundlich's equations showed that the sorption intensity is 2.402 and the adsorption capacity is 3.126, and the sorption of Cd fits with the Freundlich equation. Consequently, it was clarified how glass waste material can be utilized for reducing the high levels of Cd concentrations from aqueous solutions as a step to combat environmental pollution.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 28 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Using Crushed Glass with Sand as a Single and Dual Filter Media for Removal of Turbidity from Drinking Water
...Show More Authors

View Publication
Publication Date
Wed Nov 09 2022
Journal Name
International Journal Of Special Education
Adsorption of Methylene Blue from Their Aqueous Solution
...Show More Authors

Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Approximate Solutions for Nonlinear Blasius Equations
...Show More Authors

The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta method (RK4), which gives very

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Alexandria Engineering Journal
Calcium/iron-layered double hydroxides-sodium alginate for removal of tetracycline antibiotic from aqueous solution
...Show More Authors

Crossref (40)
Crossref
Publication Date
Mon Jan 31 2022
Journal Name
Flood Handbook
Debris and Solid Wastes in Flood Plain Management
...Show More Authors

Publication Date
Fri Jun 10 2022
Journal Name
Eurasian Chemical Communications
Detection of lead and cadmium in types of chips from local markets in Baghdad
...Show More Authors

View Publication
Scopus (1)
Scopus
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Biosorption of Lead, Cadmium and Nickle from Industrial Wast water by Using Dried Macroalgae
...Show More Authors

Biosorpion of lead (Pb), Cadmium (Cd) and Nickl(Ni) by dried biomass of Chara sp. for sample of BMP was used as alternative approach of conventional method. The range of removal percentages was between 92-97%, 70-98.7% and 46.6-96.6% for Pb, Cd and Ni respectively at 3h.Treatment time, with 300-500 mg dried weight from Chara sp. powder at pH 4, with 60 rpm at shaker. FTIR analysis showed the active groups which are responsible for sequestration of heavy metals represented by carboxyl, hydroxyl alkyl, amine and amide. The Biosorption equilibrium experiment for elements showed that the highest sorption percentage for three elements was, Pb 96.6% after 30 minute, for Cd was 100% after 15 minute and 40% to Ni after 75 minute, while the biosorp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Modeling and Simulation of Cadmium Removal from the Groundwater by Permeable Reactive Barrier Technology
...Show More Authors

The removal of cadmium ions from simulated groundwater by zeolite permeable reactive barrier was investigated. Batch tests have been performed to characterize the equilibrium sorption properties of the zeolite in cadmium-containing aqueous solutions. Many operating parameters such as contact time, initial pH of solution, initial concentration, resin dosage and agitation speed were investigated. The best values of these parameters that will achieved removal efficiency of cadmium (=99.5%) were 60 min, 6.5, 50 mg/L, 0.25 g/100 ml and 270 rpm respectively. A 1D explicit finite difference model has been developed to describe pollutant transport within a groundwater taking the pollutant sorption on the permeable reactive barrier (PRB), which i

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Ecological Engineering
Removal of Nitrate from Aqueous Solution by Bio-Calcium from Iraqi Eggshells
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Apr 06 2021
Journal Name
Journal Of Polymers And The Environment
Novel Sorbent of Sand Coated with Humic Acid-Iron Oxide Nanoparticles for Elimination of Copper and Cadmium Ions from Contaminated Water
...Show More Authors

Nanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were c

... Show More
View Publication
Crossref (12)
Crossref