In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification methods, the results indicate that MLP was better than otherswith precision 81% , it took the maximum execution time for processing of the data-sets.
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreBackground: Penetrating neck injuries are common problem in our country due to increasing violence, terrorist bombing and military operations.
These injuries are potentially life threating and need great attention and proper management.
Objective: The aim of this study is to focus on the importance of anatomical zonal classification of the neck in the management of penetrating injuries of the visceral compartment of the Neck.
Methods :70 patients with various injuries who were managed at causality unit and Otolaryngology department in Al-Kindy Teaching Hospital during aperiod from January 1st 2015 to October 31st 2015.
The study carried on those patient depending on proper clinical examination and their urgent management.
Landlocked countries are displayed geopolitical new geo-political and intended to
countries that do not have sea views, a phenomenon present in four continents of the world
are: Africa, Europe, and Asia, and South America and the number arrived at the present time
to the (44) state the largest number of them in the continent it arrived in Africa (16) countries
in Asia (13) countries and Europe (13) In the State of South America two. This phenomenon
emerged due to the division of federations and empires and colonial treaties and others. But
the negative effects suffered by these countries may vary from one country to another, since
these countries in the continent of Europe, for example, is different from the same cou
This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreWireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreEarth’s climate changes rapidly due to the increases in human demands and rapid economic growth. These changes will affect the entire biosphere, mostly in negative ways. Predicting future changes will put us in a better position to minimize their catastrophic effects and to understand how humans can cope with the new changes beforehand. In this research, previous global climate data set observations from 1961-1990 have been used to predict the future climate change scenario for 2010-2039. The data were processed with Idrisi Andes software and the final Köppen-Geiger map was created with ArcGIS software. Based on Köppen climate classification, it was found that areas of Equator, Arid Steppes, and Snow will decrease by 3.9 %, 2.96%, an
... Show MoreThe research aims to identify how to enhance the quality of the human resources, focusing on four dimensions (efficiency, effectiveness, flexibility, and reliability), by adopting an adventure learning method that combines theoretical and applied aspects at the same time, when developing human resources and is applied using information technology, and that Through its dimensions, which are (cooperation, interaction, communication, and understanding), as the research problem indicated a clear deficiency in the cognitive perception of the mechanism of employing adventure learning dimensions in enhancing human resources quality, so the importance of research was to present treatments and proposals to reduce this problem. To achieve
... Show Moreimportumt educational institution as (kindergartens) need teachers which qualified ownes modalities in their education for children , as Marzanu method in a way of learning and own methods of crisis management, because the teachers that own those styles of learning ginekindergarten children knowledge and the childrenIeaving based on theMeaing and knowledge and integration of their information, And teachers that earn methods of crisis management provide for the children of the kindergarten security within the educational institution which in turn affect the growth and development of the Child and then abilities, health physical, mental, psychological …etc.., The aims of the current research have identified to recognize: 1- the dimension
... Show More