In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification methods, the results indicate that MLP was better than otherswith precision 81% , it took the maximum execution time for processing of the data-sets.
Gypseous soils represented one of the most complex salty soils that faced the geotechnical engineers. Structures that built on gypsum soil will undergo unexpected distortions that will eventually contribute to catastrophic failure. The purpose of this article is to understand the durability of gypsum soil against wetting drying cycles after improvement with polyurethane polymer especially investigate the effect of the wetting-drying cycle on collapsibility. The soil was brought from Sawa lake in AL-Muthanna Governorate in Iraq, with gypsum content 65.5%, A set of Odometer tests were performed to determine the collapsibility potential (CP) for treated and untreated gypsum soil. The result shows that adding a different per
... Show MoreThe speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T
In the present work theoretical relations are derived for the efficiency evaluation for the generation of the third and the fourth harmonics u$ing crystal cascading configuration. These relations can be applied to a wide class of nonlinear optical materials. Calculations are made for beta barium borate (BBO) crystal with ruby laser /.=694.3 nm . The case study involves producing the third harmonics at X. =231.4 nm of the fundamental beam. The formula of efficiency involves many parameters, which can be changed to enhance the efficiency. The results showed that the behavior of the efficiency is not linear with the crystal length. It is found that the efficiency increases when the input power increases. 'I'he walk-off length is calculated for
... Show MoreIn this study, the adsorption of Zn (NO3)2 is carried out by using surfaces of malvaparviflora. The validity of the adsorption is evaluated by using atomic absorption Spectrophotometry through determination the amount of adsorbed Zn (NO3)2. Various parameters such as PH, adsorbent weight and contact time are studied in terms of their effect on the reaction progress. Furthermore, Lagergren’s equation is used to determine adsorption kinetics. It is observed that high removal of Zn (NO3)2 is obtained at PH=2. High removal of Zn (NO3)2 is at the time equivalent of 60 min and reaches equilibrium,where 0.25gm is the best weight of adsorbant . For kinetics the reaction onto malvaparviflora follows pseudo first order Lagergren’s equation.
Optical Mark Recognition (OMR) is an important technology for applications that require speedy, high-accuracy processing of a huge volume of hand-filled forms. The aim of this technology is to reduce manual work, human effort, high accuracy in assessment, and minimize time for evaluation answer sheets. This paper proposed OMR by using Modify Bidirectional Associative Memory (MBAM), MBAM has two phases (learning and analysis phases), it will learn on the answer sheets that contain the correct answers by giving its own code that represents the number of correct answers, then detection marks from answer sheets by using analysis phase. This proposal will be able to detect no selection or select more than one choice, in addition, using M
... Show More