Chromene is considered a fused pyran ring with a benzene ring, which is found in many plants and is part of many important compounds such as anthocyanidins, anthocyanins, catechins, and flavanones. These compounds are included under the headings "flavonoids" and "isoflavonoids." These compounds are well known as bioactive molecules with wide medicinal uses. According to these pharmacokinetic characteristics, many researchers are giving more attention to this type of compound and its derivatives. Many chromene derivatives have been synthesized to study their biological effects for the treatment of many diseases. Furthermore, the researcher displayed wide interest in finding new methods for synthesizing chromene derivatives. These methods depend on utilizing a new catalyst to increase the yield of this reaction or reduce the time of the reaction. On the other hand, new methods were found by using a new reactant and a new substrate. This review will present the most recent important methods for the synthesis of chromene derivatives as well as an examination of their biological activity.
By unusual method for separating two isomers of a substituted nitro-coumarin using a soxhlet extractor and in controlling temperature to get a selective nitration reaction, several new Schiff base coumarins were synthesized from nitro coumarins as starting material, which were reduced by Fe in glacial acetic acid to produce corresponding amino coumarin derivatives. Then the latter was reacted with different aromatic aldehydes to produce the desired Schiff bases derivatives. After characterization by Fourier transform infrared (FT-IR), Proton nuclear magnetic resonance (1HNMR) and Carbon-13 nuclear magnetic resonance (C-NMR), all these compounds were evaluated as potential Antimicrobial and Antioxidant Agents.
The world is currently challenging the serious effects of the pandemic of the Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Data on pediatric COVID are rare and scattered in the literature. In this article, we presented the updated knowledge on the pediatric COVID-19 from different aspects. We hope it will increase the awareness of the pediatricians and health care professionals on this pandemic.
This study include design and synthesis of 2 derivatives of compounds consisting of mefenamic acid, glycine and organic nitrates (2-nitrooxy ethanol or 1,3-dinitrooxy-2-propanol). Nitric oxide NO has been reported to support many of the same mucosal protection mechanisms as prostaglandins and is sufficient for acute gastroprotection and ulcer healing. So we suppose these 2 compounds would reduce non-steroidal anti-inflammatory drugs NSAIDs gastrointestinal side effect.
Key words: Non-Steroidal anti-inflammatory dr
... Show MoreIn this work, the preparation of some new oxazolidine and thiazolidine derivatives has been conducted. This was done over two steps; the first step included the synthesis of Schiff bases A1-A5 in 72-88% yields by the condensation of isonicotinic acid hydrazide and aldehydes. The second step includes the cyclization of derivatives A1-A5 with glycolic acid and thioglycolic acid to obtain the desired products, oxazolidine derivatives B1-B5 (44-60% yields) and thiazolidine derivatives C1-C5 (41-61% yields), respectively. The structure of the prepared compounds was characterized using FT-IR, 1H NMR, and 13C NMR spectroscopy. Some of the produced compounds were tested for antioxidant properties.
In recent years, there has been a rise in interest in the study of antibiotic occurrence in the aquatic environment due to the negative consequences of prolonged exposure and the potential for bacterial antibiotic resistance. Most antibiotic residues from treated wastewater end up in the aquatic environment as they are not eliminated in facilities that treat wastewater. Antibiotics must be identified in influent and effluent wastewater using reliable analytical techniques for several reasons. Firstly, monitoring antibiotic presence in aquatic environments. Secondly, assessing environmental risks, computing wastewater treatment plant removal efficiencies, and estimating antibiotic consumption. Therefore, this work aims to provide an overview
... Show MoreVarious of 2,5- disubstituted 1,3,4-oxadiazole (Schiff base, ?- lactam and azo) were synthesized from 2,5-di (4,4?-amino-1,3,4-oxadiazole which usequently synth-esized from mixture of 4- amino benzoic acid and hydrazine arch of polyphosphorus acid. The synthesized compounds were cherecterized by using some spectral data (UV, FT-IR , and 1H-NMR)
Newly acid hydrazide was synthesized from ethyl 2-(2,3-dimethoxyphenoxy) acetate (2), which is cyclized to the corresponding 4-amino-1,2,4-triazole (3). Five newly azo derivatives (4a-e) were synthesized from this 1,2,4-triazole by converting the amine group to diazonium salt then reacted with various substituent phenol,as well three newly imine derivatives (5a-c) were synthesized from reacting the amine group of compound (3) with three aryl aldehyde. The thermal electro conductivity of these compounds was tested at 30, 50, 75 and 100 áµ’C. compound 4a showed interesting electro conductivity at 75áµ’C as well 5a at 75áµ’C while 5b showed significant conductivity at 100 áµ’C
Heterocyclic systems, which are essential in medicinal chemistry due to their promising cytotoxic activity, are one of the most important families of organic molecules found in nature or produced in the laboratory. As a result of coupling N-(4-nitrophenyl)-3-oxo-butanamide (3) using thiourea, indole-3-carboxaldehyde, or piperonal, the pyrimidine derivatives (5a and 5b) were produced. Furthermore, pyrimidine 9 was synthesized by reacting thiophene-2-carboxaldehyde with ethyl cyanoacetate and urea with potassium carbonate as a catalyst. The chalcones 11a and 11b were synthesized by reacting equal molar quantities of 1-naphthaldehy
... Show More