This comprehensive review examines the efficacy and safety of tumor necrosis factor-alpha (TNF-α) inhibitors in treating various autoimmune diseases, and focuses on their application in Iraqi patients. Elevated TNF-α levels are linked to autoimmune disorders, leading to the development of anti-TNF-α therapies such as infliximab, etanercept, adalimumab, certolizumab pegol, and golimumab, which have gained FDA approval for conditions like psoriasis, in¬flammatory bowel disease, ankylosing spondylitis, and rheumatoid arthritis. While these therapies demonstrate sig¬nificant therapeutic benefits, including improved quality of life and disease management, they also carry risks, such as increased susceptibility to infections and potential malignancies. The review highlights the variable patient re¬sponses to TNF-α inhibitors, influenced by pharmacokinetic and pharmacodynamic factors as well as genetic varia¬tions. The rise of anti-drug antibodies and inadequate drug concentrations are common challenges observed, empha¬sizing the need for therapeutic drug monitoring. Safety profiles of TNF-α inhibitors are generally favorable, but adverse effects (including infections and infusion reactions) have been reported. Genetic factors, such as polymorphisms in the TNF-α gene, may also play a role in the treatment responsiveness and adverse effects, suggesting the potential for personalized medicine approaches. While TNF-α inhibitors effectively manage autoimmune diseases in Iraqi pa¬tients, further research is warranted in order to optimize treatment strategies, assess long-term safety, and explore genetic influences on therapy outcomes. The findings underscore the importance of individualized treatment plans so as to enhance the efficacy and minimize the risks associated with these biologic therapies.
Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreThe focus of this research lies in the definition of an important aspect of financial development, which is reflected on the alleviation of poverty in Iraq, namely financial inclusion and then taking the path of achieving a sustainable economy, certainly after reviewing one of the important international experiences in this regard and finally measuring the level of financial inclusion in Iraq and its impact on poverty reduction through the absolute poverty line indicator.
X-ray diffractometers deliver the best quality diffraction data while being easy to use and adaptable to various applications. When X-ray photons strike electrons in materials, the incident photons scatter in a direction different from the incident beam; if the scattered beams do not change in wavelength, this is known as elastic scattering, which causes amplitude and intensity diffraction, leading to constructive interference. When the incident beam gives some of its energy to the electrons, the scattered beam's wavelength differs from the incident beam's wavelength, causing inelastic scattering, which leads to destructive interference and zero-intensity diffraction. In this study, The modified size-strain plot method was used to examin
... Show MoreThe main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show More