This paper discusses Ree–Eyring fluid’s peristaltic transport in a rotating frame and examines the impacts of Magnetohydrodynamics (MHD). The results deal with systematically (analytically) applying each of the governing equations of Ree–Eyring fluid, the axial and secondary velocities, flow rate due to auxiliary stream, and bolus. The effects of some distinctive variables, such as Hartman number, heat source/sink, and amplitude ratio, are taken under consideration and illustrated through graphs.
SKF Sami I. Jafar, Mohammad J. Kadhim, Engineering and Technology Journal, 2018 - Cited by 4
In this paper, a study of improving the physical properties, mechanical and thermal insulation are conducted to produce gypsum boards with lightweight from waste materials. These boards can be used as an internal packaging wall or partitions tile of non-Bering with a high thermal insulation. Gypsum plaster mixed with waste material like (PET Polyethylene terephthalate, sawdust in size4.75mm and rubber) in different ratio (5%, 7%, 10%, 15%, 20%, 25%and 30%) of plaster to produce boards and then to find out the effect of these materials on the properties of boards, so that tests of consistency, setting time, flexural strength, density and thermal conductivity were achieved for all samples to find out this effect. The result shows that the
... Show MoreExtended calculations for sputtering yield through bombed Nickel – target by Xenon ions plasma are accomplished. The calculations include changing the input parameters: the energy of xenon ions plasma, the hit target angle of nickel target, thickness of the nickel target layer, and the slight change in the surface binding energy of Nickel. The program TRIM is used to accomplish these calculations. The results show that the sputtering yields directly dependent on these parameters. The change in angles of incidence plasma ions and energy leads to a significant change in the sputtering yields. On the other hand, the sputtering yields ore highly affected by changing target width and surface binding energy at fixed ion parameters.
Length of plasma generated by dc gas discharge under different vacuum pressures was studied experimentally. The cylindrical discharge tube of length 2m was evacuated under vacuum pressure range (0.1-0.5) mbar at constant external working dc voltage 1500V. It was found that the plasma length (L) increased exponentially with increasing of background vacuum air pressure. Empirical equation has been obtained between plasma length and gas pressure by using Logistic model of curve fitting. As vacuum pressure increases the plasma length increases due to collisions, ionizations, and diffusions of electrons and ions.
Background: The diagnosis of Toxoplasma gondii infection in human can be determined by variable immunological and molecular methods.
Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.
Data hiding strategies have recently gained popularity in different fields; Digital watermark technology was developed for hiding copyright information in the image visually or invisibly. Today, 3D model technology has the potential to alter the field because it allows for the production of sophisticated structures and forms that were previously impossible to achieve. In this paper, a new watermarking method for the 3D model is presented. The proposed method is based on the geometrical and topology properties of the 3D model surface to increase the security. The geometrical properties are based on computing the mean curvature for a surface and topology based on the number of edges around each vertex, the vertices
... Show MoreBulk polycrystalline samples have been prepared by the two-step solid state reaction process. It has been observed that as grown Tl2-xHgxSr2Ca2Cu3O10+δ (with x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1) corresponds to the 2223 phase. It has been found that Tc varies with Hg content .The optimum Tc is about 120K for the composition Tl1.6Hg0.4Sr2Ca2Cu3O10+δ.The microstructure for Tl1.6Hg0.4Sr2Ca2Cu3O10+δ observed to be most dense and this phase exhibits the highest stability.