Over the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as DCT, DWT, DFT, PCA, LBP, SURF, SIFT, etc., or deep learning techniques such as CNN, DNN, Alex Net CNN, VGG-16, SVM, Squeeze Net, Google Net, MobileNetV2, etc. The effort will make it easier for researchers, especially those who are new to the field, to have a brief understanding of the trend of employing deep learning in a trustworthy biometric for the identification and recognition of human identification.
Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThe using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support
... Show MoreEriobotrya japonica Lindl., named as loquat, is a subtropical fruit tree of the family Rosaceae which is well known medical plant originated in Japan and China. Loquat portions, like leaves, peels and fruits have been shown to possess various health usefulnesses. In Chinese classical medicine, it is vastly utilized in many illnesses, like gastroenteric disorders, diabetes mellitus, pulmonary inflammatory diseases and chronic bronchitis. Loquat plant contain many active constituents, such as flavonoids, carotenoids, vitamins, polyphenolic compounds, other that have many biological effects like anti-tumor, anti-diabetic, anti-inflammatory, anti-mutagenic, antioxidant, antiviral, antitussive, hepatoprotective and hypoli
... Show MoreThis review discusses precision agriculture techniques that help reduce the effects of soil degradation and improve soil health, based on an analysis of studies published in scientific databases such as Web of Science, Scopus, IEEE Xplore, Google Scholar, and ScienceDirect, with an emphasis on recent field research. The methodology included a qualitative analysis of case studies and application experiments in different areas to evaluate the impact of technologies such as controlled traffic farming (CTF), mechanized guidance (MG), precision fertilization (PF), precision irrigation (PI), conservation tillage (CT), and precision tillage (PT). Research results showed, CT to maintain soil structure and reduce organic matter loss increases soil f
... Show MoreThe aims of this study to diagnose the role of the (relationship and impact) Academic driving practices dimensions (model the way, inspire a shared vision, challenge the process, enable others to act, encourage the heart ) in the activation of human capital (investment and development) for (knowledge, skills, expertise, creative and training capabilities) in a sample of university professors in Baghdad city(Baghdad University, Al Mustansiriya University, University of Technology). (367 )samples were distributed to (232 at the University of Baghdad, 97 at Al-Mustansiriya University and 38 at the University of Technology). The goals of descriptive analytical method research have been used, questionnaire has been a main tool for dat
... Show MoreThis study deals with the orthographic processing ability of homophones
which can account for variance in word recognition and production skills due to
phonological processing. The study aims at: A)Investigating whether the students
can recognize correct usage and spelling comprehension of different homophones
by using appropriate word that overlapped in both phonology and orthography.
B)Assessing spelling production word association to the written form of the
homophone in the sentence comprehension task. To achieve these aims, two tests
have been conducted and distributed on 50 students at first stage at the College of
Education(Ibn-Rushd) for the academic year 2010-2011. The two tests are exposed
to a jury of
Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreMost recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show More