Over the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as DCT, DWT, DFT, PCA, LBP, SURF, SIFT, etc., or deep learning techniques such as CNN, DNN, Alex Net CNN, VGG-16, SVM, Squeeze Net, Google Net, MobileNetV2, etc. The effort will make it easier for researchers, especially those who are new to the field, to have a brief understanding of the trend of employing deep learning in a trustworthy biometric for the identification and recognition of human identification.
Monthly water samples from three stations in Diwanya river at Diwanyia city were collected during December 1999 to June 2000. Variables from each stations were determined including ; temperature, pH ,dissolved oxygen, dissolved carbon dioxide , alkalinity ,total hardness, calcium ,magnesium , phosphate, nitrite, nitrate, chlorophyll-a , and total number of phytoplankton .The river considered as fresh water , alkaline ,very hard .The parameters recorded at different values from up and down stream.
Texture is an important characteristic for the analysis of many types of images because it provides a rich source of information about the image. Also it provides a key to understand basic mechanisms that underlie human visual perception. In this paper four statistical feature of texture (Contrast, Correlation, Homogeneity and Energy) was calculated from gray level Co-occurrence matrix (GLCM) of equal blocks (30×30) from both tumor tissue and normal tissue of three samples of CT-scan image of patients with lung cancer. It was found that the contrast feature is the best to differentiate between textures, while the correlation is not suitable for comparison, the energy and homogeneity features for tumor tissue always greater than its valu
... Show MoreNon Uniform Illumination biological image often leads to diminish structures and inhomogeneous intensities of the image. Algorithm has been proposed using Morphological Operations different types of structuring elements including (dick, line, square and ball) with the same parameters of (15).To correct the non-uniform illumination and enhancement biological images, the non-uniform background illumination have been removed from image, using (contrast adjustment, histogram equalization and adaptive histogram equalization). The used basic approach to extract the statistical features values from gray level of co-occurrence matrices (GLCM) can show the typical values for features content of biological images that can be in form of shape or sp
... Show MoreThe palm vein recognition is one of the biometric systems that use for identification and verification processes since each person have unique characteristics for the veins. In this paper we can improvement palm vein recognition system have been made. The system based on centerline extraction of veins, and employs the concept of Difference-of Gaussian (DoG) Function to construct features vector. The tests results on our database showed that the identification rate is 100 % with the minimum error rate was 0.333.
In current generation of technology, a robust security system is required based on biometric trait such as human gait, which is a smooth biometric feature to understand humans via their taking walks pattern. In this paper, a person is recognized based on his gait's style that is captured from a video motion previously recorded with a digital camera. The video package is handled via more than one phase after splitting it into a successive image (called frames), which are passes through a preprocessing step earlier than classification procedure operation. The pre-processing steps encompass converting each image into a gray image, cast off all undesirable components and ridding it from noise, discover differen
... Show More<span lang="EN-US">The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of e
... Show MoreIn this study, gold nanoparticles were synthesized in a single step biosynthetic method using aqueous leaves extract of thymus vulgaris L. It acts as a reducing and capping agent. The characterizations of nanoparticles were carried out using UV-Visible spectra, X-ray diffraction (XRD) and FTIR. The surface plasmon resonance of the as-prepared gold nanoparticles (GNPs) showed the surface plasmon resonance centered at 550[Formula: see text]nm. The XRD pattern showed that the strong four intense peaks indicated the crystalline nature and the face centered cubic structure of the gold nanoparticles. The average crystallite size of the AuNPs was 14.93[Formula: see text]nm. Field emission scanning electron microscope (FESEM) was used to s
... Show MoreIn this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this
... Show More