Over the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as DCT, DWT, DFT, PCA, LBP, SURF, SIFT, etc., or deep learning techniques such as CNN, DNN, Alex Net CNN, VGG-16, SVM, Squeeze Net, Google Net, MobileNetV2, etc. The effort will make it easier for researchers, especially those who are new to the field, to have a brief understanding of the trend of employing deep learning in a trustworthy biometric for the identification and recognition of human identification.
It is not often easy to identify a certain group of words as a lexical bundle, since the same set of words can be, in different situations, recognized as idiom, a collocation, a lexical phrase or a lexical bundle. That is, there are many cases where the overlap among the four types is plausible. Thus, it is important to extract the most identifiable and distinguishable characteristics with which a certain group of words, under certain conditions, can be recognized as a lexical bundle, and this is the task of this paper.
Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show MoreOne of the most serious health disasters in recent memory is the COVID-19 epidemic. Several restriction rules have been forced to reduce the virus spreading. Masks that are properly fitted can help prevent the virus from spreading from the person wearing the mask to others. Masks alone will not protect against COVID-19; they must be used in conjunction with physical separation and avoidance of direct contact. The fast spread of this disease, as well as the growing usage of prevention methods, underscore the critical need for a shift in biometrics-based authentication schemes. Biometrics systems are affected differently depending on whether are used as one of the preventive techniques based on COVID-19 pandemic rules. This study provides an
... Show MoreIn this review of literature, the light will be concentrated on the role of stem cells as an approach in periodontal regeneration.
Laser assisted skin wound closure offers many distinct advantages over conventional closure
techniques. The objective of this in vitro experimental study, carried out at the Institute of Laser for
Postgraduate Studies/Baghdad University, was to determine the effectiveness of 980 nm diode laser in
welding of human skin wounds. Multiple 3-4 cm long full thickness incisions in a specimen of human
skin obtained from the discarded panniculus of an Abdominoplasty operation were tried to be laser
welded using a 4 mm spot diameter laser beam from a 980 nm diode laser at different laser parameters
and modes of action. The tensile strength at the weld site was analyzed experimentally. Although laser
assisted wound welding did
In this work, the elemental constituents of smoker and nonsmoker
teeth samples of human were analyzed by Laser induced breakdown
spectroscopy method (LIBS). Many elements have been detected in
the healthy teeth samples, the important once are Ca, P, Mg, Fe, Pb
and Na. Many differences were found between (female and male)
teeth in Ca, P, Mg, Na and Pb contents. The concentrations of most
toxic elements were found significantly in the smoker group. The
maximum concentrations of toxic elements such as Pb, Cd and Co
were found in older male age above 60 year. Also, it was found that
the minimum concentrations of trace elements such as Ca, P and Na
exist in this age group. From these results it is clear that the
STAG3 is the meiotic component of cohesin and a member of the Cancer Testis Antigen (CTA) family. This gene has been found to be overexpressed in many types of cancer, and recently, its variants have been implicated in other disorders and many human diseases. Therefore, this study aimed to analyze the major variants of STAG3. Western blot (WB) and immunoprecipitation (IP) assays were performed using two different anti-STAG3 antibodies that targeted the relevant protein in MCF-7, T-47D, MDA-MB-468, and MDA-MB-231 breast cancer cells with Jurkat and MCF-10A cells as positive and negative controls, respectively. In silico analyses were searched to study the major isoforms. WB and IP assays revealed two abundant polypeptides < 191 kDa and
... Show MoreImage recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third
... Show More