Document source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing characteristics effectively. This study proposes leveraging quantum-inspired computing to improve KNN classifiers for printer source identification, offering better accuracy even with noisy or variable printing conditions. The proposed approach uses the Gray Level Co-occurrence Matrix (GLCM) for feature extraction, which is resilient to changes in rotation and scale, making it well-suited for texture analysis. Experimental results show that the quantum-inspired KNN classifier captures subtle printing artifacts, leading to improved classification accuracy despite noise and variability.
Like the digital watermark, which has been highlighted in previous studies, the quantum watermark aims to protect the copyright of any image and to validate its ownership using visible or invisible logos embedded in the cover image. In this paper, we propose a method to include an image logo in a cover image based on quantum fields, where a certain amount of texture is encapsulated to encode the logo image before it is included in the cover image. The method also involves transforming wavelets such as Haar base transformation and geometric transformation. These combination methods achieve a high degree of security and robustness for watermarking technology. The digital results obtained from the experiment show that the values of Peak Sig
... Show MoreNowadays, most of the on-chip plasmonic single-photon sources emit an unpolarized stream of single photons that demand a subsequent polarizer stage in a practical quantum cryptography system. In this paper, we numerically demonstrated the coupling of the light emitted from a quantum emitter (QE) at 700 nm wavelength to the propagation mode supported by an on-chip hybrid plasmonic waveguide (HPW) polarization rotator. Our results proved that the light emitted is linearly polarized at 0º, 45º/−45º, and 90º with propagation lengths of 5 μm, 3.3 μm, and 3.9 μm, respectively. Moreover, high power-conversion efficiency was obtained from an applied transverse magnetic (TM) mode (0º-polarization) to a transverse electric (TE) (90º-polari
... Show MoreProgression in Computer networks and emerging of new technologies in this field helps to find out new protocols and frameworks that provides new computer network-based services. E-government services, a modernized version of conventional government, are created through the steady evolution of technology in addition to the growing need of societies for numerous services. Government services are deeply related to citizens’ daily lives; therefore, it is important to evolve with technological developments—it is necessary to move from the traditional methods of managing government work to cutting-edge technical approaches that improve the effectiveness of government systems for providing services to citizens. Blockchain technology is amon
... Show MoreAs an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreIris recognition occupies an important rank among the biometric types of approaches as a result of its accuracy and efficiency. The aim of this paper is to suggest a developed system for iris identification based on the fusion of scale invariant feature transforms (SIFT) along with local binary patterns of features extraction. Several steps have been applied. Firstly, any image type was converted to grayscale. Secondly, localization of the iris was achieved using circular Hough transform. Thirdly, the normalization to convert the polar value to Cartesian using Daugman’s rubber sheet models, followed by histogram equalization to enhance the iris region. Finally, the features were extracted by utilizing the scale invariant feature
... Show MoreIn this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
Face Identification system is an active research area in these years. However, the accuracy and its dependency in real life systems are still questionable. Earlier research in face identification systems demonstrated that LBP based face recognition systems are preferred than others and give adequate accuracy. It is robust against illumination changes and considered as a high-speed algorithm. Performance metrics for such systems are calculated from time delay and accuracy. This paper introduces an improved face recognition system that is build using C++ programming language with the help of OpenCV library. Accuracy can be increased if a filter or combinations of filters are applied to the images. The accuracy increases from 95.5% (without ap
... Show More