Document source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing characteristics effectively. This study proposes leveraging quantum-inspired computing to improve KNN classifiers for printer source identification, offering better accuracy even with noisy or variable printing conditions. The proposed approach uses the Gray Level Co-occurrence Matrix (GLCM) for feature extraction, which is resilient to changes in rotation and scale, making it well-suited for texture analysis. Experimental results show that the quantum-inspired KNN classifier captures subtle printing artifacts, leading to improved classification accuracy despite noise and variability.
The present work aimed to study effect of (N749 & N3) dyes on TiO2 optical and electrical properties for optoelectronic application. The TiO2 paste prepared by using a doctor blade method. The samples were UV-VIS specterophometricall analyzes of TiO2 before and after immersed in dyes (N749 & N3). The results showed absorption spectra shift toward the visible region due to the adsorption of dye molecules on the surface of oxide nanoparticles. It is seen that the Eg determined to give a value of 3.3eV for TiO2 before immersing in dyes, and immersing in dyes (N749 & N3) are (1.4 &1.6 eV) respectively. The structural properties (XRD), (FTIR) and (SEM) for the sample prepared were investigated and (J-V) characteristics was stu
... Show MoreIn this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr
... Show MoreSmart systems are the trend for modern organizations and should meet the quality of services that expect to produce. Internet of Everything (IoE) helped smart systems to adopt microcontrollers for improving the performance. Analyzing and controlling data in such a system are critical issues. In this study, a survey of IoE systems conducted to show how to apply a suitable model that meets such system requirements. The analysis of some microcontroller boards is explored based on known features. Factors for applying IoE devices have been defined such as connectivity, power consumption, compatibility, and cost. Different methods have been explained as an overview of applying IoE systems. Further, different approaches for applying IoE technology
... Show MoreThe Accommodation industry in Iraq suffers from many problems, especially after 2003, when the Accommodation industry was exposed to many crises due to the security and political situation in Iraq, which negatively affected the administrative operations inside the industry and created many problems, the most important of which are deterioration, high costs and poor performance, so some hotel administrations sought To find alternative solutions that help in the advancement of hotels, one of the proposals is to go to technology, as technology is currently one of the most important solutions to solve large complex problems, as the world has turned to automation to solve complex problems such as increasing production, reducing costs, and rai
... Show MoreThis research aims to clarify the importance of an accounting information system that uses artificial intelligence to detect earnings manipulation. The research problem stems from the widespread manipulation of earning in economic entities, especially at the local level, exacerbated by the high financial and administrative corruption rates in Iraq due to fraudulent accounting practices. Since earning manipulation involves intentional fraudulent acts, it is necessary to implement preventive measures to detect and deter such practices. The main hypothesis of the research assumes that an accounting information system based on artificial intelligence cannot effectively detect the manipulation of profits in Iraqi economic entities. The researche
... Show MoreHerein, an efficient inorganic/organic hybrid photocatalyst composed of zeolitic imidazolate framework (ZIF-67) decorated with Cd0.5Zn0.5S solid solution semiconductor was constructed. The properties of prepared ZIF- [email protected] nanocomposite and its components (ZIF-67 and Cd0.5Zn0.5S) were investigated using XRD, FESEM, EDX, TEM, DRS and BET methods. The photocatalytic activity of fabricated [email protected] nanocomposite were measured toward removal of methyl violet (MV) dye as a simulated organic contaminant. Under visible-light and specific conditions (photocatalyst dose 1 g/l, MV dye 10 mg/l, unmodified solution pH 6.7 and reaction time 60 min.), the acquired [email protected] photocatalyst showed advanced photocatalytic activity
... Show MoreWater pollution has created a critical threat to the environment. A lot of research has been done recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS based on colloidal Ag nanoflowers. The chemical method was used to synthesize nanoflowers from silver ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This nanoflowers SERS action in detecting Na3PO4 was reported and analyzed
... Show More