To study the comparative use of some soil minerals (zeolite, bentonite, phosphate rock, and limestone) in the adsorption and release of lead and its removal rates from its aqueous solutions using adsorption equations. Two laboratory experiments were carried out for the adsorption and release of lead. The adsorption experiment took 0.5 g of some of the above soil minerals. Lead was added as Pb (NO3)2 at levels of 3.0, 2.0, 1.5, 1.0, 0.5, and 0.0 mmol L-1 containing a concentration of 0.01M of calcium chloride. The experimental unit’s number was 72, the concentration of dissolved lead in the equilibrium solution was estimated and the amount of lead adsorbed was calculated. As for the lead release experiment, samples for the adsorption experiment were treated after separating filtrates from them with a calcium chloride solution with a concentration of 0.01 M. The amount of lead released was estimated. The percentage of lead removal was calculated. Results showed an increased concentration of dissolved lead in the equilibrium solution directly with increased levels of lead added to all materials. Materials were graded in concentrations of dissolved, adsorbed lead and values of maximum adsorption capacity of lead on different soil minerals surfaces as follows: zeolite > bentonite > phosphate rock > limestone, which reached 5000, 384.61, 769.23, and 2500 mg Pb kg-1, respectively. Binding energy was 0.0062, 0.0056, 0.0019, and 0.0049 L g-1, respectively. The amount of lead released from different adsorption materials varied, with the largest amount released in zeolite amounting to 322.10, 528.20, 696.90, 777.20, and 967.40 mg Pb kg-1 zeolite then bentonite, quantity reached 187.2, 272.8, 314.2, 324.0, and 375.6 mg Pb kg-1 bentonite, then phosphate rock, concentrations reached 65.80, 69.80, 77.60, 91.00, and 123.00 mg Pb kg-1 phosphate rock. Limestone came in fourth and last place in terms of the amount of lead released, concentrations were 25.10, 29.30, 35.00, 38.70, and 40.90 mg Pb L-1 for lead addition treatments of 0.5, 1.0, 1.5, 2.0 and 3.0 mmol L-1, respectively. Soil minerals used varied in their efficiency in removing lead from its aqueous solutions. Zeolite came in first place. Removal rate of lead reached 180.69%, then bentonite 95.47%, phosphate rock 18.48%, and finally limestone 58%.
The adsorption of hexavalent chromium by preparing activated carbon from date seeds with zinc chloride as chemical activator and granular date seeds was studied in a batch system. The characteristics of date seeds and prepared activated carbon (ZAC) were determined and found to have a surface area 500.01 m2/g and 1050.01 m2/g , respectively and iodine number of 485.78 mg/g and 1012.91 mg/g, respectively. The effects of PH value (2-12), initial sorbate concentration(50-450mg/L), adsorbent weight (0.004-0.036g) and contact time (30-150 min) on the adsorption process were studied . For Cr(VI) adsorption on ZAC, at 120 min time contact, pH solution 2 and 0.02 adsorbent weight will ach
... Show MoreThe subject of this research involves studying adsorption to removal herbicide Atlantis WG from aqueous solutions by bentonite clay. The equilibrium concentration have been determined spectra photometry by using UV-Vis spectrophotometer. The experimental equilibrium sorption data were analyzed by two widely, Langmuir and Freundlish isotherm models. The Langmuir model gave a better fit than Freundlich model The adsorption amount of (Atlantis WG) increased when the temperature and pH decreased. The thermodynamic parameters like ?G, ?H, and ?S have been calculated from the effect of temperature on adsorption process, is exothermic. The kinetic of adsorption process was studied depending on Lagergren ,Morris ? Weber and Rauschenberg equati
... Show MoreActivated carbon prepared from date stones by chemical activation with ferric chloride (FAC) was used an adsorbent to remove phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) from aqueous solutions. The influence of process variables represented by solution pH value (2-12), adsorbent to adsorbate weight ratio (0.2-1.8), and contact time (30-150 min) on removal percentage and adsorbed amount of Ph and PNPh onto FAC was studied. For PNPh adsorption,( 97.43 %) maximum removal percentage and (48.71 mg/g) adsorbed amount was achieved at (5) solution pH,( 1) adsorbent to adsorbate weight ratio, and (90 min) contact time. While for Ph adsorption, at (4) solution pH, (1.4) absorbent to adsorbate weight ratio, and (120 min) contact
... Show MoreThe research seeks to examine the ability of fifth preparatory students in solving a mathematical problem in relation to system thinking. To this end, the researcher chose (140) fifth preparatory students from four-different secondary schools in Kirkuk city for the academic year (2016-2017). Two tests were adopted to collect study data: a test of (5) items about skills in solving math problem designed by (Al-raihan, 2006); and a test of system thinking skills designed by the researcher himself consisted of (14) items. It was divided into four skills (analyzing the main system to subsystems, eliminating all inner gaps of system, identifying the inner connection of system, and reorganizing the system). The findings indicated a good ability
... Show MoreWe studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1
... Show MoreBiosorption is an effective method to remove toxic metals from wastewaters. In this study biosorption of lead and chromium ions from solution was studied using Citrobacter freundii and Citrobacter kosari isolated from industrial wastewater. The experimental results showed that optimum grwoth temperature for both bacteria is 30oC and the optimum pH is 7 &6 for C. freundii and C. kosari respectively. While the optimum incubation period to remove Pb and Cr for C. freundii and C. kosari is 4 days and 3days respectively. Also the biosorption of Pb and Cr in mixed culture of bacteria and mixed culture of Pb and Cr was investigated. Result indicate that uptake of Cr and Pb for C.freundii, C. kosari and in mixes culture of both bacteria is 58%, 53%
... Show MoreThis investigation was carried out to study the treatment and recycling of wastewater in the Battery industry for an effluent containing lead ion. The reuse of such effluent can only be made possible by appropriate treatment method such as electro coagulation.
The electrochemical process, which uses a cell comprised aluminum electrode as anode and stainless steel electrode as cathode was applied to simulated wastewater containing lead ion in concentration 30 – 120 mg/l, at different operational conditions such as current density 0.4-1.2 mA/cm2, pH 6 -10 , and time 10 - 180 minute.
The results showed that the best operating conditions for complete lead removal (100%) at maximum concentration 120 mg/l was found to be 1.2 mA/cm2 cur