To study the comparative use of some soil minerals (zeolite, bentonite, phosphate rock, and limestone) in the adsorption and release of lead and its removal rates from its aqueous solutions using adsorption equations. Two laboratory experiments were carried out for the adsorption and release of lead. The adsorption experiment took 0.5 g of some of the above soil minerals. Lead was added as Pb (NO3)2 at levels of 3.0, 2.0, 1.5, 1.0, 0.5, and 0.0 mmol L-1 containing a concentration of 0.01M of calcium chloride. The experimental unit’s number was 72, the concentration of dissolved lead in the equilibrium solution was estimated and the amount of lead adsorbed was calculated. As for the lead release experiment, samples for the adsorption experiment were treated after separating filtrates from them with a calcium chloride solution with a concentration of 0.01 M. The amount of lead released was estimated. The percentage of lead removal was calculated. Results showed an increased concentration of dissolved lead in the equilibrium solution directly with increased levels of lead added to all materials. Materials were graded in concentrations of dissolved, adsorbed lead and values of maximum adsorption capacity of lead on different soil minerals surfaces as follows: zeolite > bentonite > phosphate rock > limestone, which reached 5000, 384.61, 769.23, and 2500 mg Pb kg-1, respectively. Binding energy was 0.0062, 0.0056, 0.0019, and 0.0049 L g-1, respectively. The amount of lead released from different adsorption materials varied, with the largest amount released in zeolite amounting to 322.10, 528.20, 696.90, 777.20, and 967.40 mg Pb kg-1 zeolite then bentonite, quantity reached 187.2, 272.8, 314.2, 324.0, and 375.6 mg Pb kg-1 bentonite, then phosphate rock, concentrations reached 65.80, 69.80, 77.60, 91.00, and 123.00 mg Pb kg-1 phosphate rock. Limestone came in fourth and last place in terms of the amount of lead released, concentrations were 25.10, 29.30, 35.00, 38.70, and 40.90 mg Pb L-1 for lead addition treatments of 0.5, 1.0, 1.5, 2.0 and 3.0 mmol L-1, respectively. Soil minerals used varied in their efficiency in removing lead from its aqueous solutions. Zeolite came in first place. Removal rate of lead reached 180.69%, then bentonite 95.47%, phosphate rock 18.48%, and finally limestone 58%.
Nanopesticides are novel plant protection products offering numerous benefits. Because nanoparticles behave differently from dissolved chemicals, the environmental risks of these materials could differ from conventional pesticides. We used soil–earthworm systems to compare the fate and uptake of analytical‐grade bifenthrin to that of bifenthrin in traditional and nanoencapsulated formulations. Apparent sorption coefficients for bifenthrin were up to 3.8 times lower in the nano treatments than in the non‐nano treatments, whereas dissipation half‐lives of the nano treatments were up to 2 times longer. Earthworms in the nano treatments accumulated approximately 50% more b
The study included examination of three types of different origin and orange juice at the rate of recurring per sample, the results showed that the highest rates of acid (pH) in the A and juice were (4). And salts of calcium is 120 ppm in juice C and 86 ppm of magnesium in the juice B, for heavy metals the highest rate of lead .18 recorded ppm in juice B, 1.32 ppm of copper in juice A, 5 ppm of iron in the juice B, 1.3 ppm of zinc in the juice B, 0.05 ppm of aluminum in each of the sappy B and A, 0.02 ppm of cobalt in the juice B, 0.3 ppm of nickel in the juice B, 170.6 ppm sodium in C juice, but for the acids, organic that the highest rates were 3.2 part Millions of acid in the juice owner a, 260 ppm of the acid in the juice the ascorbi
... Show MoreIn this work, lanthanium (III) complexes were synthesized using by Schiff base ligand (L) derived from benzaldehyde and o-aminoaniline with five amino acids (AA) from glycine (Gly), L-alanine (Ala), L-valine (Val), L-asparagine (Asp) and DL- phenylalanine (Phe). The Schiff base ligand has been characterized by elemental analysis, (MASS, FTIR, 1HNMR, 13CNMR, UV-VIS) electronic spectra. The structures of the new complexes have been described of analysis of elements, molar conductivity, (UV-Vis electronic, FTIR, mass) spectra also magnetic moment. The molar conductivity values of the complexes indicat this every of complexes are electrolytes and other analytical studies reveal octahedral geometry for La (III) ion. The Schiff base ligand, five
... Show MoreA mercury porosimeter has been used to measure the intrusion volume of the three types mercury positive lead acid-battery plates. The intrusion volumes were used to calculate the pore diameter, pore volume, pore area, and pore size distribution. The variation of the pore area in positive lead acid-battery plates as well as of the pore volume has the following sequence. Paste positive > Uncured positive > Cured positive
Biofilm formation is one of the biggest challenges of scientists. Role of heavy metals in forming biofilm is not clear enough. Here, the effect of lead on biofilm formation by Bacillus spp. isolated from soil in terms of biofilm formation and remove was studied. In present study, 10 isolates of Bacillus spp were isolated from soil. The ability of all isolates to form biofilm was evaluated. The effect of lead on biofilm formation was studied by adding lead (pb) before forming biofilm. In another experiment the lead was added after biofilm formation to study the effect of lead on biofilm remove. The current study, showed the ability of all studied isolates to form biofilm. Maximum biofilm formation by Bacillus spp isolate number 8 (B8) follow
... Show MoreIn this study, dependence of gamma-ray absorption coefficient on the size of Pb particle size ranging from 200µm up to 2.5mm, using different weights of each particle size. The results show that gamma-ray attenuation coefficient is inversely proportional with the size of Pb particle size due to the reduction of the spaces between the lead particles.
A mercury porosimeter has been used to measure the intrusion volume of the three types mercury positive lead acid-battery plates. The intrusion volumes were used to calculate the pore diameter, pore volume, pore area, and pore size distribution. The variation of the pore area in positive lead acid-battery plates as well as of the pore volume has the following sequence. Paste positive > Uncured positive > Cured positive