An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LTADM) is a trustworthy technique for solving differential equations. Using the Mathematica 13.3 programme, the graphs of the approximate solutions and consecutive error are presented. Two applications are presented as examples of how the proposed technique can be utilised to obtain analytical or numerical solutions for certain kinds of Random Integro Differential Equations (RIDEs) in order to demonstrate its efficacy and potential.
In this work, we consider a modification of the Lotka-Volterra food chain model of three species, each of them is growing logistically. We found that the model has eight equilibrium points, four of them always exist, while the rest exist under certain conditions. In terms of stability, we found that the system has five unstable equilibrium points, while the rest points are locally asymptotically stable under certain satisfying conditions. Finally, we provide an example to support the theoretical results.
Making the data secure is more and more concerned in the communication era. This research is an attempt to make a more secured information message by using both encryption and steganography. The encryption phase is done with dynamic DNA complementary rules while DNA addition rules are done with secret key where both are based on the canny edge detection point of the cover image. The hiding phase is done after dividing the cover image into 8 blocks, the blocks that are used for hiding selected in reverse order exception the edge points. The experiments result shows that the method is reliable with high value in PSNR
This paper deals with constructing a model of fuzzy linear programming with application on fuels product of Dura- refinery , which consist of seven products that have direct effect ondaily consumption . After Building the model which consist of objective function represents the selling prices ofthe products and fuzzy productions constraints and fuzzy demand constraints addition to production requirements constraints , we used program of ( WIN QSB ) to find the optimal solution
In this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.
The continuous growth in technology and technological devices has led to the development of machines to help ease various human-related activities. For instance, irrespective of the importance of information on the Steam platform, buyers or players still get little information related to the application. This is not encouraging despite the importance of information in this current globalization era. Therefore, it is necessary to develop an attractive and interactive application that allows users to ask questions and get answers, such as a chatbot, which can be implemented on Discord social media. Artificial Intelligence is a technique that allows machines to think and be able to make their own decisions. This research showed that the dis
... Show MoreIn this paper ,we introduce hollow modules with respect to an arbitrary submodule .Let M be a non-zero module and T be a submodule of M .We say that M is aT-hollow module if every proper submodule K of M such that T ⊈ K is a T-small submodule of M .We investigate the basic properties of a T-hollow module
In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
In previous our research, the concepts of visible submodules and fully visible modules were introduced, and then these two concepts were fuzzified to fuzzy visible submodules and fully fuzzy. The main goal of this paper is to study the relationships between fully fuzzy visible modules and some types of fuzzy modules such as semiprime, prime, quasi, divisible, F-regular, quasi injective, and duo fuzzy modules, where under certain conditions it has been proven that each fully fuzzy visible module is fuzzy duo. In addition, there are many various properties and important results obtained through this research, which have been illustrated. Also, fuzzy Artinian modules and fuzzy fully stable modules have been introduced, and we study the rel
... Show MoreBackground: Polycystic ovary syndrome (PCOS) is
the most common form of chronic anovulation
associated with androgen excess; it occurs in about 5
– 10% 0f reproductive age women. Metabolic
syndrome is characterized by insulin resistance,
hypertension, obesity, abnormalities of blood clotting
and dyslipidemia.
Adult women with PCOS have an increased
prevalence of the metabolic syndrome(MBS).
Objectives: To detect the prevalence of metabolic
syndrome in women with proved PCOS, attending the
Specialized Center for Endocrinology and Diabetes, in
Baghdad.
Materials and methods : A total number of 40
women with proved PCOS were included in this study
which was conducted in the Specialized Center f