Preferred Language
Articles
/
qxfogJEBVTCNdQwCrpX2
Analytical approximate solutions of random integro differential equations with laplace decomposition method
...Show More Authors

An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LTADM) is a trustworthy technique for solving differential equations. Using the Mathematica 13.3 programme, the graphs of the approximate solutions and consecutive error are presented. Two applications are presented as examples of how the proposed technique can be utilised to obtain analytical or numerical solutions for certain kinds of Random Integro Differential Equations (RIDEs) in order to demonstrate its efficacy and potential.

Scopus
Publication Date
Thu Dec 01 2011
Journal Name
Engineering Analysis With Boundary Elements
Numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Sun Aug 09 2015
Journal Name
No
Stability and Instability of Some Types of Delay Differential Equations
...Show More Authors

Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Qualitative Analysis of some Types of Neutral Delay Differential Equations
...Show More Authors

     In this paper, we conduct some qualitative analysis that involves the global asymptotic stability (GAS) of the Neutral Differential Equation (NDE) with variable delay, by using  Banach contraction mapping theorem, to give some necessary conditions to achieve the GAS of the zero solution.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Jun 06 2023
Journal Name
Journal Of University Of Anbar For Pure Science (juaps)
Approximate Solution of Emden-Fowler Equation Using the Galerkin Method
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
1st Samarra International Conference For Pure And Applied Sciences (sicps2021): Sicps2021
Solving the created ordinary differential equations from Lomax distribution
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations
...Show More Authors

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jul 17 2019
Journal Name
Iraqi Journal Of Science
An Approximation Technique for Fractional Order Delay Differential Equations
...Show More Authors

In this research article, an Iterative Decomposition Method is applied to approximate linear and non-linear fractional delay differential equation. The method was used to express the solution of a Fractional delay differential equation in the form of a convergent series of infinite terms which can be effortlessly computable.
The method requires neither discretization nor linearization. Solutions obtained for some test problems using the proposed method were compared with those obtained from some methods and the exact solutions. The outcomes showed the proposed approach is more efficient and correct.

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
The Continuous Classical Boundary Optimal Control of Triple Nonlinear Elliptic Partial Differential Equations with State Constraints
...Show More Authors

    Our aim in this work is to study the classical continuous boundary control vector  problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector,  by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
The Classical Continuous Mixed Optimal Control of Couple Nonlinear Parabolic Partial Differential Equations with State Constraints
...Show More Authors

In this work, the classical continuous mixed optimal control vector (CCMOPCV) problem of couple nonlinear partial differential equations of parabolic (CNLPPDEs) type with state constraints (STCO) is studied. The existence and uniqueness theorem (EXUNTh) of the state vector solution (SVES) of the CNLPPDEs for a given CCMCV is demonstrated via the method of Galerkin (MGA). The EXUNTh of the CCMOPCV ruled with the CNLPPDEs is proved. The Frechet derivative (FÉDE) is obtained. Finally, both the necessary and the sufficient theorem conditions for optimality (NOPC and SOPC) of the CCMOPCV with state constraints (STCOs) are proved through using the Kuhn-Tucker-Lagrange (KUTULA) multipliers theorem (KUTULATH).

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Existence and Uniqueness Theorem of Fuzzy Stochastic Ordinary Differential Equations
...Show More Authors

     A fuzzy valued diffusion term, which in a fuzzy stochastic differential equation refers to one-dimensional Brownian motion, is defined by the meaning of the stochastic integral of a fuzzy process. In this paper, the existence and uniqueness theorem of fuzzy stochastic ordinary differential equations, based on the mean square convergence of the mathematical induction approximations to the associated stochastic integral equation, are stated and demonstrated.

View Publication Preview PDF
Scopus (1)
Scopus Crossref