Preferred Language
Articles
/
qxfMoZIBVTCNdQwCP7sl
Development of a remineralizing calcium phosphate nanoparticle-containing self-etching system for orthodontic bonding
...Show More Authors
Abstract<sec> <title>Objectives

This study aimed to incorporate hydroxyapatite nanoparticles (nHA) or amorphous calcium phosphate nanoparticles (nACP) into a self-etch primer (SEP) to develop a simplified orthodontic bonding system with remineralizing and enamel preserving properties.

Materials and Methods

nHA and nACP were incorporated into a commercial SEP (Transbond™ plus) in 7% weight ratio and compared with the plain SEP as a control. Shear bond strengths (SBS), enamel damage, and adhesive remnant index (ARI) scores were evaluated at 24 h and post 5000 thermocycling. Field-emission scanning electron microscope (FESEM) was used to inspect the distribution of the nanoparticles in the experimental SEPs and evaluate the enamel surface integrity both before bracket bonding and post bracket debonding. Phase determination and remineralizing capability of the modified SEP were characterized by X-ray diffraction and Raman spectroscopy, respectively.

Results

The addition of nHA or nACP to the SEP significantly reduced the SBS, ARI, and enamel damage (p < 0.05) as compared to the control SEP; however, only nHA-SEP survived the thermocycling protocol and yielded acceptable SBS (13.38 MPa). Enamel remineralizing ability of the developed nHA-SEP was confirmed by both FESEM images and Raman phosphate map.

Conclusions

Incorporating nHA into SEP resulted in clinically acceptable bond strengths with remineralizing ability.

Clinical relevance

The newly developed nHA-SEP has unprecedented ability to simultaneously etch, prime, and remineralize the enamel in a single step leaving immaculate enamel surface with the potential of saving cost and time at the post-debonding step.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 18 2022
Journal Name
Materials Science Forum
The Effect of Gamma Radiation on the Manufactured HgBa&lt;sub&gt;2&lt;/sub&gt;Ca&lt;sub&gt;2&lt;/sub&gt;Cu&lt;sub&gt;2.4&lt;/sub&gt;Ag&lt;sub&gt;0.6&lt;/sub&gt;O&lt;sub&gt;8+δ&lt;/sub&gt; Compound
...Show More Authors

In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref